{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import datetime\n",
"import json\n",
"from math import fabs\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import os\n",
"import pandas as pd\n",
"from pathlib import Path\n",
"from scipy.optimize import minimize\n",
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"from abrechnung import spielwert"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"spieler = [\"Andi\", \"Balthasar\", \"Michi\", \"Moritz\", \"Olaf\", \"MP\", \"Philipp\"]\n",
"spieler = [\"Balthasar\", \"Michi\", \"Moritz\", \"MP\", \"Olaf\", \"Philipp\", \"Sonja\"]\n",
"match0 = {\"startzeit\": 0}\n",
"for sp in spieler:\n",
" match0[sp] = 0\n",
"niceColumns = [\"Ansager\", \"spieltyp\", \"farbe\"] + spieler + [\"spieldauer\"]"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1579605870_Sauspiel.json\n",
"1579104126_Sauspiel.json\n",
"1579087166_Sauspiel.json\n",
"1578666218_Sauspiel.json\n",
"1579269514_Solo.json\n",
"1579268763_Sauspiel.json\n",
"1579518783_Sauspiel.json\n",
"1579014832_Sauspiel.json\n",
"1579174423_Sauspiel.json\n",
"1579014279_Sauspiel.json\n",
"1579173551_Sauspiel.json\n",
"1578920475_Sauspiel.json\n",
"1579259297_Sauspiel.json\n",
"1578396731_Sauspiel.json\n",
"1578929426_Solo.json\n",
"1579259076_Sauspiel.json\n",
"1579604519_Sauspiel.json\n",
"1578654131_Sauspiel.json\n",
"1578482592_Sauspiel.json\n",
"1579519227_Ramsch.json\n",
"1579518561_Sauspiel.json\n",
"1578395167_Sauspiel.json\n",
"1578655454_Sauspiel.json\n",
"1579519692_Sauspiel.json\n",
"1578931142_Sauspiel.json\n",
"1578395462_Sauspiel.json\n",
"1578667912_Sauspiel.json\n",
"1579175359_Sauspiel.json\n",
"1579681851_Wenz.json\n",
"1579534356_Sauspiel.json\n",
"1579621134_Sauspiel.json\n",
"1579518332_Sauspiel.json\n",
"1579270579_Ramsch.json\n",
"1578928668_Sauspiel.json\n",
"1579532535_Sauspiel.json\n",
"1578930844_Sauspiel.json\n",
"1579606093_Sauspiel.json\n",
"1579260231_Solo.json\n",
"1579271125_Ramsch.json\n",
"1579175597_Sauspiel.json\n",
"1578929823_Sauspiel.json\n",
"1579533478_Sauspiel.json\n",
"1578665371_Solo.json\n",
"1579270300_Sauspiel.json\n",
"1579088796_Sauspiel.json\n",
"1578481525_Wenz.json\n",
"1579259899_Wenz.json\n",
"1578396128_Sauspiel.json\n",
"1579175116_Sauspiel.json\n",
"1579260977_Sauspiel.json\n",
"1579175786_Solo.json\n",
"1579000619_Sauspiel.json\n",
"1578665684_Sauspiel.json\n",
"1579259906_Ramsch.json\n",
"1578667364_Sauspiel.json\n",
"1578654336_Sauspiel.json\n",
"1579604754_Sauspiel.json\n",
"1579605611_Sauspiel.json\n",
"1579680495_Sauspiel.json\n",
"1578395216_Sauspiel.json\n",
"1579086214_Wenz.json\n",
"1578482010_Solo.json\n",
"1579261450_Wenz.json\n",
"1578667181_Sauspiel.json\n",
"1579088088_Ramsch.json\n",
"1578396409_Sauspiel.json\n",
"1578920544_Sauspiel.json\n",
"1578654992_Wenz.json\n",
"1579000292_Wenz.json\n",
"1579087762_Sauspiel.json\n",
"1578920578_Sauspiel.json\n",
"1579174738_Solo.json\n",
"1579014088_Sauspiel.json\n",
"1578483484_Ramsch.json\n",
"1579101572_Wenz.json\n",
"1579260636_Sauspiel.json\n",
"1578396960_Wenz.json\n",
"1579681053_.json\n",
"1579518137_Sauspiel.json\n",
"1578397368_Sauspiel.json\n",
"1578668221_Sauspiel.json\n",
"1578930392_Wenz.json\n",
"1578656108_Sauspiel.json\n",
"1579606739_Sauspiel.json\n",
"1579103391_Solo.json\n",
"1579086565_Sauspiel.json\n",
"1578656668_Solo.json\n",
"1579605083_Solo.json\n",
"1579620877_Sauspiel.json\n",
"1579682483_Wenz.json\n",
"1578920511_Sauspiel.json\n",
"1579258918_Sauspiel.json\n",
"1579533241_Sauspiel.json\n",
"1579015058_Sauspiel.json\n",
"1578666487_Wenz.json\n",
"1579089748_Solo.json\n",
"1578481800_Sauspiel.json\n",
"1578667586_Sauspiel.json\n",
"1579681620_Sauspiel.json\n",
"1578481167_Ramsch.json\n",
"1579534606_Ramsch.json\n",
"1579682759_Sauspiel.json\n",
"1578666847_Ramsch.json\n",
"1578395707_Solo.json\n",
"1578665162_Sauspiel.json\n",
"1578656340_Sauspiel.json\n",
"1579270791_Ramsch.json\n",
"1579532818_Sauspiel.json\n",
"1579000838_Wenz.json\n",
"1579606341_Sauspiel.json\n",
"1579680165_Sauspiel.json\n",
"1579089464_Sauspiel.json\n",
"1579088680_?.json\n",
"1578482324_Sauspiel.json\n",
"1579269990_Sauspiel.json\n",
"1579620329_Sauspiel.json\n",
"1579086849_Sauspiel.json\n",
"1579519514_Sauspiel.json\n",
"1579014519_Wenz.json\n",
"1579680781_Sauspiel.json\n",
"1579519025_Sauspiel.json\n",
"1578655702_Solo.json\n",
"1579681121_Sauspiel.json\n",
"1579604115_Solo.json\n",
"1579102183_Solo.json\n",
"1578930055_Solo.json\n",
"1579103869_Sauspiel.json\n",
"1579605357_Sauspiel.json\n",
"1578929183_Sauspiel.json\n",
"1579533708_Sauspiel.json\n",
"1579269247_Sauspiel.json\n",
"1579088490_Sauspiel.json\n",
"1579087424_Sauspiel.json\n",
"1579102853_Ramsch.json\n",
"1578483360_Sauspiel.json\n",
"1579089072_Sauspiel.json\n",
"1578482861_Sauspiel.json\n",
"1579103137_Sauspiel.json\n",
"1579620519_Wenz.json\n",
"1579174007_Sauspiel.json\n",
"1578666012_Ramsch.json\n",
"1579268929_Sauspiel.json\n",
"1579534005_Sauspiel.json\n",
"1578928972_Sauspiel.json\n",
"1579102620_Sauspiel.json\n",
"1579001045_Sauspiel.json\n",
"1578654581_Sauspiel.json\n",
"1579173813_Wenz.json\n"
]
}
],
"source": [
"matches = [match0]\n",
"p = Path(\"/home/balthasar/sk/matches/\")\n",
"for f in os.listdir(p):\n",
" print(f)\n",
" with open(p/f) as f:\n",
" res = json.load(f)\n",
" sw = spielwert(**res)\n",
" sw.update(res)\n",
" if sw[\"startzeit\"] is None:\n",
" sw[\"startzeit\"] = sw[\"endzeit\"]\n",
" matches.append(sw)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" startzeit \n",
" Balthasar \n",
" Michi \n",
" Moritz \n",
" MP \n",
" Olaf \n",
" Philipp \n",
" Sonja \n",
" spieler0 \n",
" spieler1 \n",
" ... \n",
" jungfrau3 \n",
" vergeben \n",
" verspielt \n",
" farbe \n",
" endzeit \n",
" kommentar \n",
" manual_res0 \n",
" manual_res1 \n",
" manual_res2 \n",
" manual_res3 \n",
" \n",
" \n",
" \n",
" \n",
" 129 \n",
" 1579605083 \n",
" NaN \n",
" -180.0 \n",
" -180.0 \n",
" 540.0 \n",
" -180.0 \n",
" NaN \n",
" NaN \n",
" Michi \n",
" MP \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Eichel \n",
" 1.579605e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 130 \n",
" 1579605357 \n",
" 20.0 \n",
" NaN \n",
" 20.0 \n",
" -20.0 \n",
" -20.0 \n",
" NaN \n",
" NaN \n",
" MP \n",
" Olaf \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579606e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 131 \n",
" 1579605611 \n",
" 60.0 \n",
" -60.0 \n",
" 60.0 \n",
" NaN \n",
" -60.0 \n",
" NaN \n",
" NaN \n",
" Olaf \n",
" Moritz \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Eichel \n",
" 1.579606e+09 \n",
" olaf böhmisch \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 132 \n",
" 1579605870 \n",
" -20.0 \n",
" -20.0 \n",
" 20.0 \n",
" 20.0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" Moritz \n",
" Balthasar \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579606e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 133 \n",
" 1579606093 \n",
" 20.0 \n",
" 20.0 \n",
" NaN \n",
" -20.0 \n",
" -20.0 \n",
" NaN \n",
" NaN \n",
" Balthasar \n",
" Michi \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579606e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 134 \n",
" 1579606341 \n",
" NaN \n",
" 30.0 \n",
" -30.0 \n",
" 30.0 \n",
" -30.0 \n",
" NaN \n",
" NaN \n",
" Michi \n",
" MP \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579607e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 135 \n",
" 1579606739 \n",
" -200.0 \n",
" NaN \n",
" 200.0 \n",
" 200.0 \n",
" -200.0 \n",
" NaN \n",
" NaN \n",
" MP \n",
" Olaf \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579607e+09 \n",
" ohne 3 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 136 \n",
" 1579620329 \n",
" 40.0 \n",
" -40.0 \n",
" NaN \n",
" 40.0 \n",
" NaN \n",
" NaN \n",
" -40.0 \n",
" MP \n",
" Sonja \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579620e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 137 \n",
" 1579620519 \n",
" -100.0 \n",
" 300.0 \n",
" NaN \n",
" -100.0 \n",
" NaN \n",
" NaN \n",
" -100.0 \n",
" Sonja \n",
" Balthasar \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" keine \n",
" 1.579621e+09 \n",
" michi verspielt >60 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 138 \n",
" 1579620877 \n",
" -30.0 \n",
" 30.0 \n",
" NaN \n",
" 30.0 \n",
" NaN \n",
" NaN \n",
" -30.0 \n",
" Balthasar \n",
" Michi \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579621e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 139 \n",
" 1579621134 \n",
" -60.0 \n",
" 60.0 \n",
" NaN \n",
" 60.0 \n",
" NaN \n",
" NaN \n",
" -60.0 \n",
" Michi \n",
" MP \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Eichel \n",
" 1.579621e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 140 \n",
" 1579680165 \n",
" 40.0 \n",
" -40.0 \n",
" NaN \n",
" NaN \n",
" -40.0 \n",
" 40.0 \n",
" NaN \n",
" Olaf \n",
" Michi \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579680e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 141 \n",
" 1579680495 \n",
" 20.0 \n",
" -20.0 \n",
" NaN \n",
" NaN \n",
" 20.0 \n",
" -20.0 \n",
" NaN \n",
" Michi \n",
" Philipp \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579681e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 142 \n",
" 1579680781 \n",
" 140.0 \n",
" -140.0 \n",
" NaN \n",
" NaN \n",
" 140.0 \n",
" -140.0 \n",
" NaN \n",
" Philipp \n",
" Balthasar \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579681e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 143 \n",
" 1579681053 \n",
" 0.0 \n",
" 20.0 \n",
" NaN \n",
" NaN \n",
" 0.0 \n",
" -20.0 \n",
" NaN \n",
" Balthasar \n",
" Olaf \n",
" ... \n",
" False \n",
" True \n",
" NaN \n",
" keine \n",
" 1.579681e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 144 \n",
" 1579681121 \n",
" -70.0 \n",
" 70.0 \n",
" NaN \n",
" NaN \n",
" -70.0 \n",
" 70.0 \n",
" NaN \n",
" Balthasar \n",
" Olaf \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579681e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 145 \n",
" 1579681620 \n",
" -60.0 \n",
" 60.0 \n",
" NaN \n",
" NaN \n",
" 60.0 \n",
" -60.0 \n",
" NaN \n",
" Olaf \n",
" Michi \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Schelln \n",
" 1.579682e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 146 \n",
" 1579681851 \n",
" 140.0 \n",
" 140.0 \n",
" NaN \n",
" NaN \n",
" -420.0 \n",
" 140.0 \n",
" NaN \n",
" Michi \n",
" Philipp \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" keine \n",
" 1.579682e+09 \n",
" ohne 2 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 147 \n",
" 1579682483 \n",
" 240.0 \n",
" -80.0 \n",
" NaN \n",
" NaN \n",
" -80.0 \n",
" -80.0 \n",
" NaN \n",
" Philipp \n",
" Balthasar \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" keine \n",
" 1.579683e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 148 \n",
" 1579682759 \n",
" -40.0 \n",
" 40.0 \n",
" NaN \n",
" NaN \n",
" 40.0 \n",
" -40.0 \n",
" NaN \n",
" Balthasar \n",
" Olaf \n",
" ... \n",
" False \n",
" False \n",
" NaN \n",
" Gras \n",
" 1.579683e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
20 rows × 44 columns
\n",
"
"
],
"text/plain": [
" startzeit Balthasar Michi Moritz MP Olaf Philipp Sonja \\\n",
"129 1579605083 NaN -180.0 -180.0 540.0 -180.0 NaN NaN \n",
"130 1579605357 20.0 NaN 20.0 -20.0 -20.0 NaN NaN \n",
"131 1579605611 60.0 -60.0 60.0 NaN -60.0 NaN NaN \n",
"132 1579605870 -20.0 -20.0 20.0 20.0 NaN NaN NaN \n",
"133 1579606093 20.0 20.0 NaN -20.0 -20.0 NaN NaN \n",
"134 1579606341 NaN 30.0 -30.0 30.0 -30.0 NaN NaN \n",
"135 1579606739 -200.0 NaN 200.0 200.0 -200.0 NaN NaN \n",
"136 1579620329 40.0 -40.0 NaN 40.0 NaN NaN -40.0 \n",
"137 1579620519 -100.0 300.0 NaN -100.0 NaN NaN -100.0 \n",
"138 1579620877 -30.0 30.0 NaN 30.0 NaN NaN -30.0 \n",
"139 1579621134 -60.0 60.0 NaN 60.0 NaN NaN -60.0 \n",
"140 1579680165 40.0 -40.0 NaN NaN -40.0 40.0 NaN \n",
"141 1579680495 20.0 -20.0 NaN NaN 20.0 -20.0 NaN \n",
"142 1579680781 140.0 -140.0 NaN NaN 140.0 -140.0 NaN \n",
"143 1579681053 0.0 20.0 NaN NaN 0.0 -20.0 NaN \n",
"144 1579681121 -70.0 70.0 NaN NaN -70.0 70.0 NaN \n",
"145 1579681620 -60.0 60.0 NaN NaN 60.0 -60.0 NaN \n",
"146 1579681851 140.0 140.0 NaN NaN -420.0 140.0 NaN \n",
"147 1579682483 240.0 -80.0 NaN NaN -80.0 -80.0 NaN \n",
"148 1579682759 -40.0 40.0 NaN NaN 40.0 -40.0 NaN \n",
"\n",
" spieler0 spieler1 ... jungfrau3 vergeben verspielt farbe \\\n",
"129 Michi MP ... False False NaN Eichel \n",
"130 MP Olaf ... False False NaN Schelln \n",
"131 Olaf Moritz ... False False NaN Eichel \n",
"132 Moritz Balthasar ... False False NaN Gras \n",
"133 Balthasar Michi ... False False NaN Schelln \n",
"134 Michi MP ... False False NaN Schelln \n",
"135 MP Olaf ... False False NaN Schelln \n",
"136 MP Sonja ... False False NaN Gras \n",
"137 Sonja Balthasar ... False False NaN keine \n",
"138 Balthasar Michi ... False False NaN Gras \n",
"139 Michi MP ... False False NaN Eichel \n",
"140 Olaf Michi ... False False NaN Gras \n",
"141 Michi Philipp ... False False NaN Gras \n",
"142 Philipp Balthasar ... False False NaN Gras \n",
"143 Balthasar Olaf ... False True NaN keine \n",
"144 Balthasar Olaf ... False False NaN Schelln \n",
"145 Olaf Michi ... False False NaN Schelln \n",
"146 Michi Philipp ... False False NaN keine \n",
"147 Philipp Balthasar ... False False NaN keine \n",
"148 Balthasar Olaf ... False False NaN Gras \n",
"\n",
" endzeit kommentar manual_res0 manual_res1 manual_res2 \\\n",
"129 1.579605e+09 NaN NaN NaN \n",
"130 1.579606e+09 NaN NaN NaN \n",
"131 1.579606e+09 olaf böhmisch NaN NaN NaN \n",
"132 1.579606e+09 NaN NaN NaN \n",
"133 1.579606e+09 NaN NaN NaN \n",
"134 1.579607e+09 NaN NaN NaN \n",
"135 1.579607e+09 ohne 3 NaN NaN NaN \n",
"136 1.579620e+09 NaN NaN NaN \n",
"137 1.579621e+09 michi verspielt >60 NaN NaN NaN \n",
"138 1.579621e+09 NaN NaN NaN \n",
"139 1.579621e+09 NaN NaN NaN \n",
"140 1.579680e+09 NaN NaN NaN \n",
"141 1.579681e+09 NaN NaN NaN \n",
"142 1.579681e+09 NaN NaN NaN \n",
"143 1.579681e+09 NaN NaN NaN \n",
"144 1.579681e+09 NaN NaN NaN \n",
"145 1.579682e+09 NaN NaN NaN \n",
"146 1.579682e+09 ohne 2 NaN NaN NaN \n",
"147 1.579683e+09 NaN NaN NaN \n",
"148 1.579683e+09 NaN NaN NaN \n",
"\n",
" manual_res3 \n",
"129 NaN \n",
"130 NaN \n",
"131 NaN \n",
"132 NaN \n",
"133 NaN \n",
"134 NaN \n",
"135 NaN \n",
"136 NaN \n",
"137 NaN \n",
"138 NaN \n",
"139 NaN \n",
"140 NaN \n",
"141 NaN \n",
"142 NaN \n",
"143 NaN \n",
"144 NaN \n",
"145 NaN \n",
"146 NaN \n",
"147 NaN \n",
"148 NaN \n",
"\n",
"[20 rows x 44 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_raw = pd.DataFrame(sorted(matches, key=lambda x: x[\"startzeit\"]))\n",
"#df[\"start\"] = df.startzeit.apply(datetime.datetime.fromtimestamp)\n",
"df_raw.tail(20)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['startzeit',\n",
" 'Balthasar',\n",
" 'Michi',\n",
" 'Moritz',\n",
" 'MP',\n",
" 'Olaf',\n",
" 'Philipp',\n",
" 'Sonja',\n",
" 'spieler0',\n",
" 'spieler1',\n",
" 'spieler2',\n",
" 'spieler3',\n",
" 'geber',\n",
" 'spieltyp',\n",
" 'leger0',\n",
" 'leger1',\n",
" 'leger2',\n",
" 'leger3',\n",
" 'spieler',\n",
" 'mitspieler',\n",
" 'kontra0',\n",
" 'kontra1',\n",
" 'kontra2',\n",
" 'kontra3',\n",
" 'tout',\n",
" 'sie',\n",
" 'schneider',\n",
" 'laufende',\n",
" 'gewonnen',\n",
" 'durchmarsch_gewinner',\n",
" 'verlierer',\n",
" 'jungfrau0',\n",
" 'jungfrau1',\n",
" 'jungfrau2',\n",
" 'jungfrau3',\n",
" 'vergeben',\n",
" 'verspielt',\n",
" 'farbe',\n",
" 'endzeit',\n",
" 'kommentar',\n",
" 'manual_res0',\n",
" 'manual_res1',\n",
" 'manual_res2',\n",
" 'manual_res3']"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(df_raw.columns)\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"df = df_raw.filter(spieler, axis=1)\n",
"df.fillna(0, inplace=True)\n",
"df[\"check\"] = df.sum(axis=1, numeric_only=True)\n",
"df_cumsum = df.cumsum()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Balthasar \n",
" Michi \n",
" Moritz \n",
" MP \n",
" Olaf \n",
" Philipp \n",
" Sonja \n",
" check \n",
" \n",
" \n",
" \n",
" \n",
" 119 \n",
" 80.0 \n",
" -80.0 \n",
" 80.0 \n",
" 0.0 \n",
" -80.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 120 \n",
" -20.0 \n",
" 20.0 \n",
" 20.0 \n",
" 0.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 121 \n",
" -180.0 \n",
" 180.0 \n",
" 180.0 \n",
" 0.0 \n",
" -180.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 122 \n",
" 40.0 \n",
" -40.0 \n",
" -40.0 \n",
" 0.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 123 \n",
" -40.0 \n",
" -40.0 \n",
" 40.0 \n",
" 0.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 124 \n",
" 30.0 \n",
" -30.0 \n",
" -30.0 \n",
" 0.0 \n",
" 30.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 125 \n",
" 40.0 \n",
" -120.0 \n",
" 40.0 \n",
" 0.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 126 \n",
" -480.0 \n",
" 160.0 \n",
" 160.0 \n",
" 0.0 \n",
" 160.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 127 \n",
" -20.0 \n",
" 20.0 \n",
" 20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 128 \n",
" 40.0 \n",
" 40.0 \n",
" 0.0 \n",
" -40.0 \n",
" -40.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 129 \n",
" 0.0 \n",
" -180.0 \n",
" -180.0 \n",
" 540.0 \n",
" -180.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 130 \n",
" 20.0 \n",
" 0.0 \n",
" 20.0 \n",
" -20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 131 \n",
" 60.0 \n",
" -60.0 \n",
" 60.0 \n",
" 0.0 \n",
" -60.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 132 \n",
" -20.0 \n",
" -20.0 \n",
" 20.0 \n",
" 20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 133 \n",
" 20.0 \n",
" 20.0 \n",
" 0.0 \n",
" -20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 134 \n",
" 0.0 \n",
" 30.0 \n",
" -30.0 \n",
" 30.0 \n",
" -30.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 135 \n",
" -200.0 \n",
" 0.0 \n",
" 200.0 \n",
" 200.0 \n",
" -200.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 136 \n",
" 40.0 \n",
" -40.0 \n",
" 0.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" -40.0 \n",
" 0.0 \n",
" \n",
" \n",
" 137 \n",
" -100.0 \n",
" 300.0 \n",
" 0.0 \n",
" -100.0 \n",
" 0.0 \n",
" 0.0 \n",
" -100.0 \n",
" 0.0 \n",
" \n",
" \n",
" 138 \n",
" -30.0 \n",
" 30.0 \n",
" 0.0 \n",
" 30.0 \n",
" 0.0 \n",
" 0.0 \n",
" -30.0 \n",
" 0.0 \n",
" \n",
" \n",
" 139 \n",
" -60.0 \n",
" 60.0 \n",
" 0.0 \n",
" 60.0 \n",
" 0.0 \n",
" 0.0 \n",
" -60.0 \n",
" 0.0 \n",
" \n",
" \n",
" 140 \n",
" 40.0 \n",
" -40.0 \n",
" 0.0 \n",
" 0.0 \n",
" -40.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 141 \n",
" 20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 142 \n",
" 140.0 \n",
" -140.0 \n",
" 0.0 \n",
" 0.0 \n",
" 140.0 \n",
" -140.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 143 \n",
" 0.0 \n",
" 20.0 \n",
" 0.0 \n",
" 0.0 \n",
" 0.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 144 \n",
" -70.0 \n",
" 70.0 \n",
" 0.0 \n",
" 0.0 \n",
" -70.0 \n",
" 70.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 145 \n",
" -60.0 \n",
" 60.0 \n",
" 0.0 \n",
" 0.0 \n",
" 60.0 \n",
" -60.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 146 \n",
" 140.0 \n",
" 140.0 \n",
" 0.0 \n",
" 0.0 \n",
" -420.0 \n",
" 140.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 147 \n",
" 240.0 \n",
" -80.0 \n",
" 0.0 \n",
" 0.0 \n",
" -80.0 \n",
" -80.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 148 \n",
" -40.0 \n",
" 40.0 \n",
" 0.0 \n",
" 0.0 \n",
" 40.0 \n",
" -40.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Balthasar Michi Moritz MP Olaf Philipp Sonja check\n",
"119 80.0 -80.0 80.0 0.0 -80.0 0.0 0.0 0.0\n",
"120 -20.0 20.0 20.0 0.0 -20.0 0.0 0.0 0.0\n",
"121 -180.0 180.0 180.0 0.0 -180.0 0.0 0.0 0.0\n",
"122 40.0 -40.0 -40.0 0.0 40.0 0.0 0.0 0.0\n",
"123 -40.0 -40.0 40.0 0.0 40.0 0.0 0.0 0.0\n",
"124 30.0 -30.0 -30.0 0.0 30.0 0.0 0.0 0.0\n",
"125 40.0 -120.0 40.0 0.0 40.0 0.0 0.0 0.0\n",
"126 -480.0 160.0 160.0 0.0 160.0 0.0 0.0 0.0\n",
"127 -20.0 20.0 20.0 -20.0 0.0 0.0 0.0 0.0\n",
"128 40.0 40.0 0.0 -40.0 -40.0 0.0 0.0 0.0\n",
"129 0.0 -180.0 -180.0 540.0 -180.0 0.0 0.0 0.0\n",
"130 20.0 0.0 20.0 -20.0 -20.0 0.0 0.0 0.0\n",
"131 60.0 -60.0 60.0 0.0 -60.0 0.0 0.0 0.0\n",
"132 -20.0 -20.0 20.0 20.0 0.0 0.0 0.0 0.0\n",
"133 20.0 20.0 0.0 -20.0 -20.0 0.0 0.0 0.0\n",
"134 0.0 30.0 -30.0 30.0 -30.0 0.0 0.0 0.0\n",
"135 -200.0 0.0 200.0 200.0 -200.0 0.0 0.0 0.0\n",
"136 40.0 -40.0 0.0 40.0 0.0 0.0 -40.0 0.0\n",
"137 -100.0 300.0 0.0 -100.0 0.0 0.0 -100.0 0.0\n",
"138 -30.0 30.0 0.0 30.0 0.0 0.0 -30.0 0.0\n",
"139 -60.0 60.0 0.0 60.0 0.0 0.0 -60.0 0.0\n",
"140 40.0 -40.0 0.0 0.0 -40.0 40.0 0.0 0.0\n",
"141 20.0 -20.0 0.0 0.0 20.0 -20.0 0.0 0.0\n",
"142 140.0 -140.0 0.0 0.0 140.0 -140.0 0.0 0.0\n",
"143 0.0 20.0 0.0 0.0 0.0 -20.0 0.0 0.0\n",
"144 -70.0 70.0 0.0 0.0 -70.0 70.0 0.0 0.0\n",
"145 -60.0 60.0 0.0 0.0 60.0 -60.0 0.0 0.0\n",
"146 140.0 140.0 0.0 0.0 -420.0 140.0 0.0 0.0\n",
"147 240.0 -80.0 0.0 0.0 -80.0 -80.0 0.0 0.0\n",
"148 -40.0 40.0 0.0 0.0 40.0 -40.0 0.0 0.0"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.tail(30)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Balthasar \n",
" Michi \n",
" Moritz \n",
" MP \n",
" Olaf \n",
" Philipp \n",
" Sonja \n",
" check \n",
" \n",
" \n",
" \n",
" \n",
" 119 \n",
" 1140.0 \n",
" 680.0 \n",
" 1060.0 \n",
" 50.0 \n",
" -1140.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 120 \n",
" 1120.0 \n",
" 700.0 \n",
" 1080.0 \n",
" 50.0 \n",
" -1160.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 121 \n",
" 940.0 \n",
" 880.0 \n",
" 1260.0 \n",
" 50.0 \n",
" -1340.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 122 \n",
" 980.0 \n",
" 840.0 \n",
" 1220.0 \n",
" 50.0 \n",
" -1300.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 123 \n",
" 940.0 \n",
" 800.0 \n",
" 1260.0 \n",
" 50.0 \n",
" -1260.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 124 \n",
" 970.0 \n",
" 770.0 \n",
" 1230.0 \n",
" 50.0 \n",
" -1230.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 125 \n",
" 1010.0 \n",
" 650.0 \n",
" 1270.0 \n",
" 50.0 \n",
" -1190.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 126 \n",
" 530.0 \n",
" 810.0 \n",
" 1430.0 \n",
" 50.0 \n",
" -1030.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 127 \n",
" 510.0 \n",
" 830.0 \n",
" 1450.0 \n",
" 30.0 \n",
" -1030.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 128 \n",
" 550.0 \n",
" 870.0 \n",
" 1450.0 \n",
" -10.0 \n",
" -1070.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 129 \n",
" 550.0 \n",
" 690.0 \n",
" 1270.0 \n",
" 530.0 \n",
" -1250.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 130 \n",
" 570.0 \n",
" 690.0 \n",
" 1290.0 \n",
" 510.0 \n",
" -1270.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 131 \n",
" 630.0 \n",
" 630.0 \n",
" 1350.0 \n",
" 510.0 \n",
" -1330.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 132 \n",
" 610.0 \n",
" 610.0 \n",
" 1370.0 \n",
" 530.0 \n",
" -1330.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 133 \n",
" 630.0 \n",
" 630.0 \n",
" 1370.0 \n",
" 510.0 \n",
" -1350.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 134 \n",
" 630.0 \n",
" 660.0 \n",
" 1340.0 \n",
" 540.0 \n",
" -1380.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 135 \n",
" 430.0 \n",
" 660.0 \n",
" 1540.0 \n",
" 740.0 \n",
" -1580.0 \n",
" -1790.0 \n",
" 0.0 \n",
" 0.0 \n",
" \n",
" \n",
" 136 \n",
" 470.0 \n",
" 620.0 \n",
" 1540.0 \n",
" 780.0 \n",
" -1580.0 \n",
" -1790.0 \n",
" -40.0 \n",
" 0.0 \n",
" \n",
" \n",
" 137 \n",
" 370.0 \n",
" 920.0 \n",
" 1540.0 \n",
" 680.0 \n",
" -1580.0 \n",
" -1790.0 \n",
" -140.0 \n",
" 0.0 \n",
" \n",
" \n",
" 138 \n",
" 340.0 \n",
" 950.0 \n",
" 1540.0 \n",
" 710.0 \n",
" -1580.0 \n",
" -1790.0 \n",
" -170.0 \n",
" 0.0 \n",
" \n",
" \n",
" 139 \n",
" 280.0 \n",
" 1010.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1580.0 \n",
" -1790.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 140 \n",
" 320.0 \n",
" 970.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1620.0 \n",
" -1750.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 141 \n",
" 340.0 \n",
" 950.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1600.0 \n",
" -1770.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 142 \n",
" 480.0 \n",
" 810.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1460.0 \n",
" -1910.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 143 \n",
" 480.0 \n",
" 830.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1460.0 \n",
" -1930.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 144 \n",
" 410.0 \n",
" 900.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1530.0 \n",
" -1860.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 145 \n",
" 350.0 \n",
" 960.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1470.0 \n",
" -1920.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 146 \n",
" 490.0 \n",
" 1100.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1890.0 \n",
" -1780.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 147 \n",
" 730.0 \n",
" 1020.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1970.0 \n",
" -1860.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
" 148 \n",
" 690.0 \n",
" 1060.0 \n",
" 1540.0 \n",
" 770.0 \n",
" -1930.0 \n",
" -1900.0 \n",
" -230.0 \n",
" 0.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Balthasar Michi Moritz MP Olaf Philipp Sonja check\n",
"119 1140.0 680.0 1060.0 50.0 -1140.0 -1790.0 0.0 0.0\n",
"120 1120.0 700.0 1080.0 50.0 -1160.0 -1790.0 0.0 0.0\n",
"121 940.0 880.0 1260.0 50.0 -1340.0 -1790.0 0.0 0.0\n",
"122 980.0 840.0 1220.0 50.0 -1300.0 -1790.0 0.0 0.0\n",
"123 940.0 800.0 1260.0 50.0 -1260.0 -1790.0 0.0 0.0\n",
"124 970.0 770.0 1230.0 50.0 -1230.0 -1790.0 0.0 0.0\n",
"125 1010.0 650.0 1270.0 50.0 -1190.0 -1790.0 0.0 0.0\n",
"126 530.0 810.0 1430.0 50.0 -1030.0 -1790.0 0.0 0.0\n",
"127 510.0 830.0 1450.0 30.0 -1030.0 -1790.0 0.0 0.0\n",
"128 550.0 870.0 1450.0 -10.0 -1070.0 -1790.0 0.0 0.0\n",
"129 550.0 690.0 1270.0 530.0 -1250.0 -1790.0 0.0 0.0\n",
"130 570.0 690.0 1290.0 510.0 -1270.0 -1790.0 0.0 0.0\n",
"131 630.0 630.0 1350.0 510.0 -1330.0 -1790.0 0.0 0.0\n",
"132 610.0 610.0 1370.0 530.0 -1330.0 -1790.0 0.0 0.0\n",
"133 630.0 630.0 1370.0 510.0 -1350.0 -1790.0 0.0 0.0\n",
"134 630.0 660.0 1340.0 540.0 -1380.0 -1790.0 0.0 0.0\n",
"135 430.0 660.0 1540.0 740.0 -1580.0 -1790.0 0.0 0.0\n",
"136 470.0 620.0 1540.0 780.0 -1580.0 -1790.0 -40.0 0.0\n",
"137 370.0 920.0 1540.0 680.0 -1580.0 -1790.0 -140.0 0.0\n",
"138 340.0 950.0 1540.0 710.0 -1580.0 -1790.0 -170.0 0.0\n",
"139 280.0 1010.0 1540.0 770.0 -1580.0 -1790.0 -230.0 0.0\n",
"140 320.0 970.0 1540.0 770.0 -1620.0 -1750.0 -230.0 0.0\n",
"141 340.0 950.0 1540.0 770.0 -1600.0 -1770.0 -230.0 0.0\n",
"142 480.0 810.0 1540.0 770.0 -1460.0 -1910.0 -230.0 0.0\n",
"143 480.0 830.0 1540.0 770.0 -1460.0 -1930.0 -230.0 0.0\n",
"144 410.0 900.0 1540.0 770.0 -1530.0 -1860.0 -230.0 0.0\n",
"145 350.0 960.0 1540.0 770.0 -1470.0 -1920.0 -230.0 0.0\n",
"146 490.0 1100.0 1540.0 770.0 -1890.0 -1780.0 -230.0 0.0\n",
"147 730.0 1020.0 1540.0 770.0 -1970.0 -1860.0 -230.0 0.0\n",
"148 690.0 1060.0 1540.0 770.0 -1930.0 -1900.0 -230.0 0.0"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_cumsum.tail(30)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"colorlist=['C0','C1','C2','C3','C4','C5','grey']\n",
"df_cumsum.drop(\"check\", axis=1, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"def perfDist(arr, dist=20):\n",
" \n",
" cons = []\n",
" def cons_generator():\n",
" for i in range(len(arr)):\n",
" for j in range(len(arr)):\n",
" if i <= j:\n",
" continue\n",
" def f (x, i=i, j=j):\n",
" return fabs(x[i]-x[j])-dist\n",
" yield f\n",
" \n",
" for l in cons_generator():\n",
" cons.append({'type': 'ineq', 'fun': l})\n",
" \n",
" res = []\n",
" def sumOfSquares(xs):\n",
" sos = 0\n",
" for x_old, x_new in zip(xs, arr):\n",
" sos += (x_old-x_new)**2\n",
" return sos\n",
" \n",
" start = arr+np.random.randn(len(arr))*0.2\n",
" res = minimize(sumOfSquares, start, constraints=cons, method='trust-constr')\n",
" return res.x, res.success, res"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"def plotter(df, t=None):\n",
" if t == None:\n",
" t=len(df)\n",
" df.iloc[0:t].plot.line(figsize=(10,8),color=colorlist)\n",
" plt.axhline(color='black', lw=1)\n",
" plt.legend(loc=3)\n",
" plt.xlabel('Runden')\n",
" plt.xlim(left=0., right=len(df)-1)\n",
" plt.ylabel('Money (€cents)')\n",
" plt.tick_params(axis='y', right=True, direction='in')\n",
" ymin,ymax=plt.gca().get_ylim()\n",
" pos,success,res = perfDist(df_cumsum.iloc[t-1].values, dist=(fabs(ymin)+fabs(ymax))/42.)\n",
" texts=[plt.text(len(df),p,name+' ({})'.format(df[name].iloc[t-1]), color=c, va='center') for (name, c, p) in zip(df.columns, colorlist, pos)]\n",
" #plt.yscale(\"semilog\")\n",
" plt.tight_layout()\n",
" return success, res"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/balthasar/.venvs/jupyterlab/lib/python3.6/site-packages/scipy/optimize/_hessian_update_strategy.py:187: UserWarning: delta_grad == 0.0. Check if the approximated function is linear. If the function is linear better results can be obtained by defining the Hessian as zero instead of using quasi-Newton approximations.\n",
" 'approximations.', UserWarning)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAI4CAYAAAB3OR9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUZfbA8e+d9DrpjQQCgVDCAKFHVBQBFQu4Kuq6S9RVrAsu6uq6+8NZ3WLBgn0R0eDaEEVdOyAKQkA6QwuhhJJK2qSXydzfH1NISA8zGSDn8zx5wtz73nvPsG44eee851VUVUUIIYQQQghhoXF1AEIIIYQQQpxNJEEWQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohG3F0dQHcJCwtT4+PjXR2GEEIIIUSbtm7dWqiqarir4+jJekyCHB8fz5YtW1wdhhBCCCFEmxRFOerqGHo6KbEQQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohGJEEWQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohGJEEWQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohGJEEWQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohGJEEWQgghhBCiEUmQhRBCCCGEaEQSZCGEEEIIIRqRBFkIIYQQQohGJEEWQgghhBCiEUmQhRCiC6pN1by39z0azA2uDkUIIYSDSYIshBBd8POJn3l287PsOLnD1aEIIYRwMEmQhRCiC/Ir85t8F0IIcf6QBFkIIbogvyq/yXchhBDnD0mQhRCiCwqqCpp8F0IIcf5wd3UAQgjRGSU1Jcz6dhbGWqP9WIh3CO9f9T5+Hn7dFoe9xEJmkIUQ4rwjM8hCiHPKqmOryCrL4uLYi5kaP5WRkSM5ZDzE/uL93RqHvcRCapCFEOK8IzPIQohzyuqjq4kLiOOpCU+hKAo5FTmsPraaQ6WHGBU5qltiMKtmTladBGQGWQghzkcygyyEOGcYa41syt3E5D6TURQFgCi/KHzcfThiPNJtcRTXFGNSTQR6BlJYXYjJbOq2ZwshhHA+SZCFEOeMn0/8jEk1MaX3FPsxjaKhr7Yvh0oPdVsctrIKXbiOBrWBouqibnu2EEII55MEWQhxzlh5dCVRflEMDRva5HiCNoHDxsPdFoetrGJ42HBAOlkIIcT5RhJkIcQ5obK+kg3ZG5jc+1R5hU2/oH7kV+VTUVfRLbHYEmRduK7JayGEEOcHSZCFEOeEdSfWUWeuY3Kfyc3O9dP2A+i2OuT8ynzcFXcGhQyyvHZggqyqKvPXz+eRnx+R2mYhhHARlyXIiqLEKYqyRlGUvYqi7FEUZa71eIiiKCsVRcm0fg+2HlcURXlZUZSDiqLsUhRlZKN7pVrHZyqKkuqq9ySEcJ6VR1cS6h3KiPARzc7ZEuRDxu6pQy6oKiDCN4JQ71A8NB4OTZC/z/qeFQdX8F3Wd7y49UWH3VcIIUTHuXIG2QQ8pKrqEGA8cL+iKEOAx4DVqqoOAFZbXwNcCQywfs0G3gBLQg08AYwDxgJP2JJqIcT5ocZUw7rsdVzW+zLcNG7NzscGxOKh8ei2OuT8qnwifCNQFIUI3wiH9UIuqSnh37/+m6TQJG4aeBNL9y7lf4f+55B7CyGE6DiX9UFWVTUXyLX+uVxRlH1AL2A6cIl1WBrwE/Co9fhSVVVVYKOiKEGKokRbx65UVbUYQFGUlcAVwIfd9maEEE61Pmc91abqFssrANw17vQJ7MPh0u5JkAuqChgYMhCASN9Ihy3Se3bzs5TVlvHW1Lfoq+3LYeNh9Bv09NP2IyksySHPEEII0b6zogZZUZR4IBnYBERak2eAPCDS+udewPFGl52wHmvteBMnT55k9OjR9q9FixY59D0IIZxn1dFVaL20jI4a3eqYftp+3TKDrKoq+VX5RPpafjRF+kU6pMRi3Yl1fHX4K+4cdieJwYl4aDx4fuLzhPmEMXfNXAqrC8/4GUKIs9eiRYvsOQoQ5up4ejqXJ8iKovgDnwIPqqpa1vicdbZYdcRzwsPD2bJli/1r9uzZjritEMKJSmpKmL9+Pl8d/oqpfabiofFodWxCUAInyk9QY6pxakxldWVUm6qJ8I0ALDPI+ZX5WH5cdU1lfSVPbnySBG0Cd+nush8P9g5m4aSFGGuNPP3r02ccuxDi7DV79mx7jgLIb8Qu5tIEWVEUDyzJ8fuqqn5mPZxvLZ3A+t322WU2ENfo8ljrsdaOCyHOUaqqsiJzBdd+fi3/O/Q/bh96Ow+PfrjNa/pp+6GicrTsqFNjs5VTRPpZZ5B9I6kz12GsNXb5nm/seIP8ynz+PuHveLp5Njk3KGQQqUmpfJ/1PbsLd3c9cCGEEB3mshpkxdLI9G1gn6qqLzQ69SWQCjxt/f5Fo+MPKIryEZYFeUZVVXMVRfke+FejhXlTgb90x3sQQjjGuhPrmLtmrr2tmWr94Cg5Ipm/jf8bicGJ7d6jX5Clk8Vh42F7fbAz2MoponyjgFOJcn5VPkHeQZ2+X05FDh/s/4Dp/aczPHx4i2NuS7qNTw58wotbX2Tx1MXN+kALIYRwLJclyMAE4PeAQVGUHdZjj2NJjJcpivIH4Cgw03ruG2AacBCoAm4HUFW1WFGUp4DN1nFP2hbsCSHODbsKd2Eym7hr2F0oWJK/ftp+XNH3CjRKxz7oig+MR6NonL7ltK1jha3EwvY9vyq/S4n5azteQ6NouH/E/a2O8ff0Z/aw2Tz969NsyNnAhF4TuhC5EEKIjnJlF4tfgNamQS5rYbwKtPgviKqqS4AljotOCNGd8ivzCfcJ54/Jf+zyPTzdPIkLiHP6Qr2CqgIUFMJ9wgHsi/W6slAvoziD/x36H7cNvY0ov6g2x85MnMl7e9/jxa0vkhKT0uFfHIQQQnSe/IQVQricra/wmeqr7ev0Vm/5VfmE+oTi4WZZMBjmE4ZG0XSpF/LCbQvx9/TnD0P/0O5YDzcP5iTPIaMkg68Pf93pZwkhhOg4SZCFEC5XUFVgr+U9E/20/ThafpR6c70DompZXlVek2TeXeNOmHdYsxnknIoc8irzWr3P5rzNrMtex126u9B6aTv07Cv6XsHgkMG8uv1Vqk3VXXsDQggh2iUJshDC5fIrT/UVPhMJQQmYzCaOlx9vf3AXFVQVNIs10q/pZiGqqnLPqnu47ovr2JK3pdk9VFXlxa0vEukbyS2DbunwszWKhnmj55FTmcMNX97AhpwNXX8jQgghWiUJshDCparqqyivL3dIiUU/raWTxZHSI2d8r9a0lMzbeiHbZJZmcsR4hAa1gXtW3cNPx3+ynztefpz7Vt+HodDA/SPux9vdu1PPHx89nremvoWiKNy98m7+vPbPsomIEEI4mCTIQgiXspUmOKLEoq+2LwCHjM7pZFFtqqasrqxZrBG+EU1KLFYdXYWCwgfTPqB/UH8eXPMgKzJX8Naut7jui+vYlr+NR8c8yoz+M7oUx/jo8Xx67afcN/w+Vh1dxY3/u9HpG6QIIURP4so2b0IIcSpBdkCJhZ+HH1F+UU7rZGHfJKSFEouK+goq6yvx8/Bj5dGVJEck0z+4P29f/jZzf5zL/A3zAZjSZwqPjnn0jH8h8HLz4t4R99I/uD/zfprH7sLdbW7FLYQQouMkQRZCuJStNMERCTJAgjbBaZ0sWou1cas3DRoOlh7k0TGPApak/bXJr/HWrrcYHj6ci2IvcmhMYyLHALDj5A5JkIUQwkEkQRZCuJRtVtYRNcgAg0MH8+7ud+2zuY5km+0+PVbb64KqAvt20JP7TLaf93Lz4oHkBxwai02QdxD9tP3YXrDdKfcXQoieSGqQhRAulV+VT5BXUKcXq7VmfPR4TKqJzXmb2x/cSa0lyLZtp/Mr81l1dBW6MF27G384UnJEMtsLtmNWzd32TCGEOJ9JgiyEcKn8SsdsEmKTHJGMt5s36TnpDrunTX5lPgGeAfh6+DY5Hu5r2VVvx8kd7Cna02T2uDuMiBhBeV250zdJEUKInkISZCGES+VXOaYHso2nmyejokY5pUdwSz2QAbzdvQnyCuKrQ18BMKX3FIc/uy0jI0YCsP1k+2UWqqo6OxwhhDjnSYIshHApR20z3VhKdApZZVlt7mTXFflV+a12n4j0jaSmoYaBwQOJC4xz6HPbExcQR4h3CNvz206QsyuyGf/BeNlgRAgh2iEJshCiVW/ufJM5P84hy5jllPvXNdRRXFPskB7IjaXEpAA4vMyirdluW5Lf3eUVAIqi2OuQ2/LT8Z+oMlXx3t73uikyIYQ4N0kXCyFEq1YfW83+4v38kv0Ld+nu4g7dHXi5eXXo2hWZKyiqKeIPQ/+AoigtjjlZfRI4tcjNUQYEDSDMJ4z0nHSuG3Bdl++z2LC4SZJdVF3UaoJsS/Kn9One8gqb5IhkVh9bTWF1IWE+YS2O2ZizEYD12es5UX6C2IDY7gxRCCHOGZIgCyFaVVRdxCWxl+Dr4cvrO1/n6yNfMz56vP28n4cftyXdRrB3cJPr9hfv58n0JzGpJvw9/Ll50M0t3t/WV9jRJRaKojA+ejzrs9djVs1olM5/WFZQVcCr218lNiCWUO9QAMZEjWFi3MQWx0/rOw1fd18SghLOKPauSo5IBmB7wfYWk/R6cz2b8zdzcezF/JL9C59mfsrckXO7O0whhDgnSIIshGiRWTVTXFNM/+D+zB05lxn9Z/D8luf5IesH+5iyujJ2ndzFoqmL8NB4AGAym5i/fj5aLy2DQgbxzK/PkBCUwJioMc2e4chd9E6XEpPCV4e/IqM4g8Ghgzt9/YrMFTSoDbx+2ev0Duzd7vgxUWNafI/dZXDIYLzcvNiWv63FBNlw0kBlfSUz+s9Ao2hYkbmC+4bfh4ebhwuiFUKIs5vUIAshWmSsNdKgNthnT1NiUlh+7XLW3rzW/vXUhKfYkr+F5zY/Z79u6d6l7Cvex1/H/5XnJj5HbEAsD/30EDkVOc2eYd+62cE1yGBZqAeQntv5OuQGcwOfZn7K+OjxHUqOzwYebh4MDRvKjoIdLZ5Pz01Ho2gYGzWWmYkzKaop4sfjP3ZzlEIIcW6QBFkI0aKi6iIAQn1CWx1zTcI1zBoyiw/3f8hnmZ+RZczi9R2vc1nvy5jSZwoBngG8POllTGYTc9fMpdpU3eT6vMo8fNx98Pfwd3j84b7h9A/q3+5CvdqG2mbH1uesJ7cyl5kDZzo8LmdKjkhmf/H+Zn/PYFmwODR0KFovLRfEXEAv/158kvGJC6IUQoiznyTIQogWFdVYE2Tv1hNkgD+N+hMp0Sk8tfEp5v08D0+NJ38d91f7+b7avjxz8TNkFGfw1q63mlxr6yvc2iK+M5USk8K2/G3UmGqancurzGPeT/NI+SCFDdlN254ty1hGmE8Yl8Rd4pS4nCU5IhmTarJvd21TVleGodDA+BhL/bibxo3rB1zPprxNTutQIoQQ5zJJkIUQLerIDDKAu8ad5yY+R5RvFJklmTwy5hH7znI2F8VexNiosfx84ucmx9vqK+wIKdEp1Jnr2FawzX7MZDaxdM9Spn8+nbUn1hLuE84jax/heNlxAHIrclmXvY7r+l9nr6s+VwwPHw7AtvxtTY5vzt2MWTXby04ArhtwHe6KO8sPLO/WGIUQ4lwgi/SEEC3q6AwygNZLy6Ipi0jPTWdG/xktjhkfM56F2xY2aUOWX5XP2Kixjgv6NKMiR+Gh8UC/QU+4jyVpL6opIrsimwt7Xcjj4x5HQeHmr29mzpo5/Hfaf/k081NUVeWGxBucFpezaL20lrKS3HRmD5ttn5lPz03Hx93HnkADhPmEMan3JJYdWNakf/KEXhO4b8R93R67EEKcTWQGWQjRoqLqItwVdwK9Ajs0Pi4wjpkDZ7ZaLnH65h0N5gYKqwqd0sHCxtfDl3uH30s/bT8CPAMI8AwgISiB5yc+z+uXvU5cQByxAbEsmLiAI8YjPL7ucT7L/IwLe11IjH+M0+Jyphn9Z7A1fytL9y61H0vPSWdM1JhmHStmD5vNmKgx9r8bk2rijZ1vNJuBFkKInkZmkIUQLSqqKSLEO6RLPYRbMjhkMEFeQWzM3cg1CddQXFOMSTU5NUEGuGvYXdzFXW2OGR89nodHP8wzm58BYP7A+U6NyZlmDZnFzpM7eWHrCwwIGkAfbR+OlR/jlkG3NBs7MGQgr132mv11tamaqz+7mhe3vsjSK5c6rTZcCCHOdjKDLIRoUVF1Ubv1x52hUTSMix5Hek46qqraeyA7epOQrrp18K3cNPAmBocM5sJeF7o6nC5TFIV/TPgHCUEJPLL2EZZlLANOzeC3xcfdh/tG3MeOkzukBZwQokeTBFkI0aKimiJCfEIces+U6BROVp/kUOmhU5uEOHGRXmcoisLfxv+Nj6/+GHfNuf3hmq+HLwsvXYiiKCzZvYQI3wj6aft16Nrp/afTV9uXhdsWYjKbmpxrqX2cEEKcjyRBFkK0qKi6qEML9DrDXoecm+60babP1PlSVhAXEMeCiQtwU9yYEDOhw+/LXePO3JFzOWI8whcHvwAsbeL+sfEfjHt/HGtPrHVm2EIIcVY4t6dJhBBOoaoqxTXFDi2xAIjxjyE+MJ70nHQGBA/AXeNOiLdjZ6nFKeOjx/P+tPeJ9o/u1HWT4iYxPHw4r+94HXeNOy9ufZGS2hI0iob0nHQujr3YSRELIcTZQWaQhRDNlNWVUW+ud/gMMliSti35W8iuyCbSN9JhiwBFy5LCkjr9S4iiKMwbNY+C6gL+tv5vRPtF8+FVH6IL07G3aK+TIhVCiLOHzCALIZqx90B28AwyWMosPsr4iHUn1jEwZKDD7y8cY2TkSOaNmoefhx/XD7geN40bSWFJfJb5GQ3mBtw0bq4OUQghnEamboQQzdh30XPCDPKYqDG4KW5Umaqc3uJNnJnbh97OzIEz7clwUmgS1aZqjhiPuDgyIYRwLkmQhRDNOHMGOcAzAF2YDkAS5HPMkNAhAOwp2uPiSIQQwrkkQRZCNGObQbZtCe1otm4WZ1sHC9G2+MB4fNx9pA5ZCHHekwRZCNFMUXURboobQV5BTrm/bSOOuIA4p9xfOIebxo3BIYNlBlkIcd6TBFkI0UxxTTHB3sFO6zAxLHwYH131ERPjJjrl/sJ5ksKS2F+8v9kmIkIIcT6RBFkI0YwzNgk5XVJYkrR4OwclhSZR21DLodJDrg5FCCGcRv51EkI0U1RT5JQFeuLclxSaBCB1yEKI85okyEKIZrpjBlmcm3oH9sbfw1/qkIUQ5zVJkIUQTaiqKjPIolUaRcPg0MEygyyEOK9JgiyEaKKyvpLahlqZQRatSgpNIqM4g/qGeleHIoQQTiEJshCiCWduEiLOD0mhSdSZ6zhYetDVoQghhFNIgiyEaMKZ20yL84NtoZ7UIQshzleSIAshmpAZZNGe2IBYAjwDJEEWQpy3JEEWQjRhn0GWBFm0QlEUkkKT2FMoCbIQ4vwkCbIQoonC6kIUFKdtMy3OD0NCh5BZmklVfZWrQxFCCIdzd3UAQoizS1FNEcHewbhr5MeDaN3FsRfzzu53uGfVPbx62asEega6OiQhzlu6NJ0KvG9INfzO+todyAU2GVINV3fiPqOBWYZUwxxdmu4SoM6QatjQieuTgQcMqYY/6NJ0g4B3gJHAXw2phgWNxmUB5UADYDKkGkafdp+HgAVAuCHVUKhL0ynAQmAaUAXcZkg1bGvh+aOAdwEf4BtgriHVoOrSdAuAbwyphh87+l7aIzPIQogmiqqLCPEOcXUY4iw3KnIUz018DkOhgTu+u4PC6kJXhyTE+awSGKpL0/lYX08BsjtzA12azt2QathiSDXMsR66BLigk3E8Drxs/XMxMAdLotuSSw2phhEtJMdxwFTgWKPDVwIDrF+zgTdauecbwF2Nxl5hPf4K8Fin3kk7ZIpICNGEbBIiOury+MsJ8AjgwZ8eZNa3s1g0ZRGxAbGuDkv0YHUNdZTXlbs6DGf5BrgKWA7cAnwIXASgS9OFAEuAflhmYGcbUg27dGk6PZBgPX5Ml6b7D/Aw8ABwD9CgS9P9DvgjliTTZiBwhSHV8LPtgC5NFwAMM6QadgIYUg0FQIEuTXdVJ9/Hi8CfgS8aHZsOLDWkGlRgoy5NF6RL00UbUg25jZ4fDQQaUg0bra+XAjOAbw2phqO6NF2oLk0XZUg15HUynhZJgiyEaKKouojh4cNdHYY4R1zQ6wLemvoW9626jz/++EdWTF/h6pBED3b9l9eTVZbl6jCc5SNgvi5N9xUwDEtCfJH13N+B7YZUwwxdmm4SsBQYYT03BLjQkGqotpZVYEg1ZOnSdG8CFY1KI0YA6NJ012BJYE8vvRgN7O5grCrwg7U05D+GVMMi672nA9mGVMNOXZqu8fhewPFGr09Yj+WeNuZEC2NstgETgE87GGObJEEWQjRRXFMsM8iiU4aHD+eB5Af416Z/cbzsOHGBca4OSfRAJTUlZJVlcUX8FYyKHOXqcM7ILdzS7Jh1Rjgey+zxN6edvhC43jruR+tsqm1hwJeGVEN1R56rS9MNAJ7DUh5x+laZ0cDJDr6FCw2phmxdmi4CWKlL0+0HtmAp0ZjawXt0VgEQ46ibSYIshLCrqq+i2lQtm4SITkuJTgEgPTddEmThEoeNhwG4NuFaLoq9qJ3RZ7eWEmSrL7HU/F4CdPQHdWVHBunSdP7AMuCuxqUNjVQD3h25lyHVkG39XqBL060AxgIlQF/ANnscC2zTpenGYqmnbvyDI5bmNdbZ1uOtjfG2xugQskhPCGEnPZBFV/UJ7EO0XzQbcjq8IF4Ih7IlyAlBCS6OxKmWAH83pBoMpx1fB9wKYC2jKDSkGsrauVc5EHDavd8xpBrWtTJ+H9C/vQB1aTo/a70yujSdH5YZ492GVIPBkGqIMKQa4g2phngsJRIjrTXDXwKzdGk6RZemGw8YT0/Sra/LdGm68dauF7NoWsecSMdLQNolM8hCCDv7Lnoygyw6SVEUUmJSWJm1EpPZJG0CRbc7XHoYH3cfovyiXB2K0xhSDSc41UWiMT2wRJem24VlkV5qB273P2C5tS54LnADkKhL091hPX+nIdWwpdGz9+vSdFpdmi7AkGoo16XporCUTQQCZl2a7kEs9c5hwArrLLE78IEh1fBdO7F8g6XF20Fr/LfbTujSdDsMqQZbPfV9nGrz9q31C12azgNL8r4FB1FUVXXUvc5qo0ePVrdscdjfmxDnpdVHV/PgTw+y7OplDA4d7OpwxDnmuyPf8cjaR/jvtP/KQk/R7e5eeTeltaV8fPXHrg7ljCmKslVV1dHtj+xeujTdn4ByQ6phsatjaUyXprsOy2z0/znqnlJiIYSws88gS4mF6IJx0eNQUEjPSXd1KKIHOlR6iH7afq4O43z3BlDr6iBa4A487+gbCiEEqqqyOW8z7oo7wd7Brg5HnIOCvYMZHDqY9Jx07hl+j6vDET1IRV0F+VX553v9scsZUg01wHuujuN0hlTDJ46+p8wgCyEA+GD/B3yX9R13DrsTD42Hq8MR56iU6BR2ndxFZX2HFs4L4RBHjEcA6Kvt6+JIxPlCEmQhBL/m/spzm5/j0rhLuXf4va4OR5zDUmJSMKkmtuTJmg/RfWwdLKTEQjiKlFgI0cOdKD/BQz8/RJ/APvzrwn+hUeT3ZtF1yRHJeLt5syFnAxPjJro6HOECRdVFvLP7HU5Wn9pTwsfdh4dGP0SAZ0AbV3bdIeMh3DXuxAVID27hGJIgC9GD1ZhqmLtmLg1qAy9Pehl/T39XhyTOcZ5unoyKHEV6rizU62nMqpnPMj/jxa0vUmWqIsbPsqmZyWwipzKHlJgULo+/3CnPPlJ6hPjAeGkvKBxG/ksSogfbVrCNAyUHePbiZ+kT2MfV4YjzREpMCgu2LCCvMu+87kkrTjlcepj5G+az8+RORkeO5v/G/x/9gizlDrUNtYx7fxwHSg44LUE+ZDzE4BBpTSkcRz5LFaIHK68rB6B/ULubIwnRYeOjxwNIu7ce5P/W/x9ZZVn888J/suTyJfbkGMDLzYv4wHgOlBxwyrNrG2rJrshu8kwhzpQkyEL0YLZOA34efi6ORJxPEoMTifCJ4LUdr7Hm2BpXhyOcrLahlr3Fe7lhwA1cm3AtiqI0G5MYnEhmSaZTnp9lzMKsmknQSos34TiSIAvRg1XUVQCSIAvHUhSFly59iQDPAOasmcOcH+eQW5Hr6rCEk2SWZGIym0gKS2p1TGJIItkV2fZPrRzJ1sFCWrwJR5IEWYgeTGaQhbPownUsu2YZ80bNY2PuRqZ/MR3DSYOrwxJOsLdoLwBDQoe0OiYxOBGAg6UHHf78w8bDaBQN8dp4h99b9FySIAvRg1XWV+Lj7iMrv4VTeGg8uH3o7Xw+/XNUVeWbI984/Bnbj5Ww4PsMGsyqw+8tOmZP0R6CvILsXStaYkuQDxQ7vg75UOkhYv1j8XLzcvi9Rc8l/yoK0YNV1FfI7LFwuhj/GIaGDWV7wXaH3/vTbSf478ZjmMwqj105yOH3F+3bU7iHpNCkFmuPbSJ9Iwn0DHTKQr0jxiOyQE84nCTIQvRglfWV+HtI72PhfMkRySzZvYSq+ip8PXwddt88Yy0Ab/58iMHRAUwf0avVsaYGM2syTlJRW28/FhHgzQUJoW0md6J1NaYaDpYe5OLYi9scpygKicGJZJRkdOr+9Q31rD2xlipTlf1YhG8E46LHAZYey1llWe0+X4jOkgRZiB6sor7CocmKEK1JjkimQW3AUGiwJzeOkFdWzYX9w6g1NfDop7tICPdnaC9ti2P/+c0+3lmf1ez4RQPCeGr6UOLD5NOUzsooyaBBbWhzgZ5NYnAinx/8HLNq7tCOnVvzt/JU+lMcMh5qdu5O3Z3MSZ7D8fLjmMwm2WJaOJwkyEL0YDKDLLrL8IjhKChsL9ju2ATZWIOul5Z5UwZy7au/cPd7W/nigQmE+TetR12+9QTvrM9iVkof7phwqtvBTxkFLPjhAFNfWssDl/bn7on98HJ3c1h851JIcMQAACAASURBVLs9hXsASArtWIJcZaoiuyK7zS2hS2pKeGHrC3x+8HNi/GJ46ZKXGBA8wH7+nT3vsNiwmNLaUlKiUwBICJIWb8KxJEEWogerqK8g1j/W1WGIHiDQM5CEoAR2FOxw2D3rTGYKK+qICvQhPMCLRb8fzQ1vbuDmRRv513U6xvYNAWDH8VIeX2HggoRQ5l89BHe3U7OXt4X15UpdNE99tZcXVh5gc1YxS+8YKyUXHbS3aC8h3iFE+ka2O9a+UK/kQKsJcmV9JTO/mklhVSF3DL2Du4fd3exTrvnj5xPkFcRiw2JWH10NSIs34XjSxUKIHqyqvkpmkEW3SY5IZufJnTSYGxxyv/yyGgCitd4A6GK1vJ06huq6Bmb+J50/L99JRl45d7+3hchAL1777cgmybFNZKA3r/52JH+7ajDrMgtZk1HgkPh6gj1F7S/Qs0kISkBBaXOhXtqeNPIq81g0dRF/GvWnFkvAFEVh7si5PDz6YUpqS4j0jZTFxsLhJEEWogeTLhaiOyVHJFNRX+GwXrh51gQ50pogA1w4IIyV8y7mnokJfLYtm8tfWktZtYlFvx9NsJ9nm/dLvSCe+FBfnvlW2sZ1RFV9FYeNhztUfwzg6+FL78Dere6oV1hdyLt73mVKnymMiRrT7v1Sk1JZeOlC/jLuL52KW4iOkARZiB5KVVUq6yrx95QZZNE9kiOSARzW7i3P2HQG2cbX053HrhzE13Mu4sqhUbz622QGRwe2ez8PNw2PXD6IjPxyVmzPdkiM57OMkgzMqrlD9cc2icGJrc4g/2fnf6hrqGNO8pwO329S70lc1vuyDo8XoqMkQRaih6ptqMWkmmQGWXSbXv69CPcJd3iCHHVagmwzMCqAN343issGt18fazNNF8XwWC0v/JBBTX3HS0GOF1eRmX9qG+U9hXsorC7s8PXnItsCvbZ20DvdgOABHCs7RlV9VZPjx8qOsfzAcq4fcL3siCfOCpIgC9FDVdRXALLNtOg+iqIwImKEwxbq5Rpr8PV0I8DLcevNFUXh0SsHkWOsYWl6VoeuyS6tZsZr67nhzXSM1fUcLzvO7779Hbd/dzvldeXt3+A0BeU1VNWZOn1dd9tTtIcInwgifCM6fE1icCIqKodKm7Zue2X7K3i4eXDP8HscHaYQXSIJshA9lG0GRxbpie6UHJFMTmUOeZV5Z3yv/LIaorTeDu84cUFCGJcMDOe1NYcwVtW3Oba6roG739tCTX0DZTX1vPnzIV7Z/gruijsnyk/w2LrHOrUosdbUwLSFvzDnQ8fvOuhoe4v2MiSs47PH0LSThc3uwt18l/Uds4bMItw33KExCtFVkiAL0UPJDLJwBVsdsiNmkXON1c3qjx3lz5cPoqymntd/bn1BoaqqPPrpLvbklPHKb5OZMaIX72xey7dZ3zIraRaPjX2MtSfW8uqOVzv83O9251FYUcuqfQVsPFzkiLfiFJX1lRwxHulUeQVYymx83X3tCfKGnA08/PPDBHsFc1vSbU6IVIiukQRZiB6qsr4SkBlk0b0GhgzEx93HIXXIecYaIgOdkyAPiQnkuhG9eGd9Fjml1S2OWbT2MF/uzOHhqQOZNCiSP00egFvYt3jgz+1JtzNz4ExuSLyBxYbFfJf1XYee+/7GY/QO8SUq0Junv92Pqp6d3TT2Fe1DRe3UAj0AjaJhQPAAthds589r/8zdK+/GXePOwkkLZcGwOKtIgixED1VRZ51B9pQZZNF9PDQe6MJ0Z5wgN5hVCsprnTaDDDBvaiKo8NKq5l0Xfsoo4Jnv9nPVsGjuu8Syi9vxmh1ofA9SkX8JuSUqiqLw+NjHSY5IZv76+ewv3t/m8zLzy/k1q5hbx/Vm3pREdhwv5bvdZ16K4gzbCrYBnVugZ5MYnMi+4n2sPrqa+0bcx6fXfmr/ZEGIs4UkyEL0UPYSC3dJkEX3GhExgoySDPunGF1RVFGLyawS5aQZZIDYYF9mpfRh+dYTHGjUoeJIYSV//HA7A6MCee6GYSiKglk18+LWF4n264VX5YU8+30GAB5uHrxwyQsEeAYw98e5FNcUN3vOhuwNfJ/1Pe9vOoanm4YbRsXym5G9GBDhz3PfZ1DfYLaP3Z1t5D8/H3JIn+Z9Rfv4aP9HLc5Sm8wm3tn9Tost2fYW7eWtXW8xLmocYT5hnX7ubwb8huv6X8dn0z/j3uH34uXm1f5FQnQzSZCF6KHsJRbysaboZhf1ugizauaTjE9aPL/9WAlLfjli/1qankVJZV2TMbn2Fm8+To31/kv74+fpzrPfWWZ/y2vquWvpFtw1Cot+PwpfT0sHja8Pf01GSQZzR/6Rey4ZyMq9+WzOsiTDYT5hvHzpyxTVFPHwzw9TVFHFd7vzMJtVlh9Yzr2r7+XxdY/z6Y4MrhgaRai/F+5uGv58xSAOF1aybMtxymrq0X+5h2tf/YV/f7vffu8z8e6ed/nnpn/y4f4Pm517aetLvLD1BVK/TWVr/lb78aLqIuaumUuQdxDPXPxMl547NGwoT054kj6BfbocuxDO5rjeOEKIc4otQZZFeqK7jYgYwYW9LuQtw1tcN+A6tF7aJucf/XQXB/Irmhwrqaxn7uQB9td5ZS1vEuJowX6e3HNJAs99n8HGw0UsXneEI4WV/PcP44gLsWyDfLzsOE//+jRDQodwZd8rqYk18176UR5atpMvH5hAkK8nSWFJPJHyBI//8jjXffwYxzIvZ6RuO5mmjxkePpydJ3dS472JW8dNtD978uAIxsQH88IPB1i4KpOTFbXcPKY3y7Yc55fMQsb3Cz2j92abHX5287MMCB5g373uq8NfkbY3jWsTrsVQaODulXfzwiUvkBKdwryf5lFSU8LSK5cS6nNmzxfibCYzyEL0UJX1lbgpbni7OTfBEKIlD458kPK6cpbsXtLsXHZJNbeO683O+VPZOX8q/SP82XWitMkY2yYhzlqk19gdE/oSGejFnWlbWLUvn/+7ajApCZbksKq+ijlrLDu/Lbh4ARpFg6+nO6/dOpI8Yw0PfLAdk7VE4pqEa0jwnEaJ+xpiB79HpuljQhnHG5MW493QH7+wzYyOD7I/V1EUHrtyMMVVdYQHePH5fRP49290jIgLYl3myTN6T3UNdRwxHuGWQbfQJ7AP836aR3ZFNnuK9qDfoGdM1Bj0F+h594p3SQhKYM6Pc7hn1T1sK9jGkxc82aXaYyHOJZIgC9FDVdRX4Ofh5/AeskJ0xMCQgVzd72re3/d+k57I5TX1VNY10CfUF62vB1pfD4bFatmVbWxyfa6xBg83hVA/T6fH6uPpxp8mJ1JRa2Lm6FhSL4gHwKya+esvf+Ww8TALJi4gLjDOfs2oPsH8Y8ZQfjlYyNPfWsozPth0jB07JxDlMQwjexihnUbWvunc9J/NlOSNosHtJJvzNzd59qg+waz786V8cf8EhsdZkucL+4exK9tIaVXTspPOOGw8TIPawMiIkbw86WUa1Abm/DiHuT/OJdQ7lAUTF+Ch8SDEO4S3p77NqMhR/Jr3K7cPvZ1p/aZ1+blCnCskQRaih6qsr5QWb8Kl7k++H7Nq5vUdr9uP5bVQWzysl5aT5bXkW8sqwLJJSGSgNxpN9/yCN3N0HB/cNY5/zNDZf6lctGsRq46tYt6oeaTEpDS/ZkwcqSl9WPzLEf7x1V6e+HI3ExOj+Oz6Rfxnyn9YOv1pFt48kgP55bhVDyPQU8uyjGXN7hMb7Iu726l/ri8aEIaqwoZDXe+TbCuvSAxOpE9gH567+DkOlh7EWGtk4aSFhHiH2Mf6e/rz+uTXeXPym8xNntvlZwpxLpEaZCF6qIq6Cnw9fF0dhujBevn34uZBN/P+vveZNWQW/YP7n1p816h0QhdrmTnddcLIlCGW47nGaqd2sDidRqNwQcKpjg0/HvuR13a8xjX9rmHWkFmtXve3q4eQkV/O4l+O0DfMj5dvTibAy4MLYi4AYPqIXsQE+VBWXc/2ihm8v+99CqsL2+wOMTwuiAAvd9ZlFjJNF92l93Og+ACeGk96B/YGYEKvCSy8dCEBngEMChnUbLyXmxcTek3o0rOEOBfJDLIQPZTMIIuzwWzdbHzdfVm4fSHQ8uK7IdGBaBQwNKpDzjNatpl2hUOlh/jLur+QFJrE/JT5bZYpebhpeP3WUdw6rjeLU0ej9fVoNmZMfAiXDY7khsQbMKkmVmSusJ/Lqcjhuc3PNdl50MNNw/iEUH452PU65AMlB0gISsBdc2qe7JK4SxgVOarL9xTifCIJshA9VGV9pWwSIlwuyDuI3w7+LT8f/5mTVSftJRYRgad64/p4upEYGWCvQ1ZVlbyyGqd3sGiJsdbInB/n4OPuw0uXvoS3e/sxhPh58s/rdCSEt/0Labw2nnFR41h+YDl1DXW8s/sdZnwxg6V7l/L7b3+PfoMeY63l7+CiAWEcL67maFHXekkfKDnAwJCBXbpWiJ5AEmQheqiK+gqZQRZnhSvjr0RF5cdjP5JrrCHUzxMvdzf7+cySTIbE+GA4YURVVYzV9dTUm7ulg0VjDeYGHl37KDmVObx46YtE+UU5/Bk3DryRnMocpn02jRe2vsC46HF8Pv1zbku6jc8Pfs61n1/L14e/5sL+lhKMdZmFnX5GYXUhRTVFJAYnOjp8Ic4bkiC7UnUpFB5s/auy6wswhGiPlFiIs0VCUALxgfGsPLaS/LKmpRNHy45yw/9uoN7vF4oq68gx1tjrlKOdvEnI6RZuW8j6nPX8ddxfnbY18qS4SUT5RaEoCgsvXcgrk14hISiBh0Y/xMdXf0xsQCyPrXsM1T2fXkE+XWr3llmSCSAJshBtkEV6rmI2w2vjoCKv9THuPvBIJngFdF9cosewtXkTwtUURWFKnyks2b2EiLLriQs8tUDtk4xPMKtmKpVDQCKGE6V4eVhml7urBrmwupAFWxbw9eGvuWngTdyQeIPTnuXh5sGn136Kl5tXsy2YB4YM5PmJzzNl+RTW56znwv4j+GZ3LqYGc5MuF+2xdbAYEDygnZFC9FySILtK8WFLcjzmLogb1/x8zjbY+DqUHodIacguHKvB3EC1qVoSZHHWmNxnMm8Z3iK/fgtjtDMAqG2o5YtDXwBwouoA7pppGLKNxAZbuq84O0E2q2aWH1jOS1tfoqahhruH3c3dw+926jMBAj0DWz0X5RdFfGA86bnpTBswmY+3HGdXtpGRvYM7fP8DJQcI9wlv0spNCNGUJMiukrPd8n3UbRA1tPn5oDhLglyeIwmycLgqUxUg20yLs8fgkMHE+MVwrGIn0dqbAVh5dCWltaVM6DWB9dnr6R9tafXmptGgKBAR4NXOXbvOZDYxe+VsNudtZlzUOP46/q/01fZ12vM6IyUmhc8Pfs4TYwNRFPgls7BTCXJmSaaUVwjRDqlBdpXcHeDuDeHN+00CEBhj+V6W030xiR6jst6y8l1qkMXZQlEUxkZOxM3vIFq/BsBSXtE7oDd3JN0BQExEEYZsI3nGasL9vfDoRFlBZ31x8As2523m0TGP8tbUt86a5BggJTqFalM1x6v2kRQT2Godcn2DmWe+289PGQX2YyaziYOlByVBFqIdkiC7Ss52iBoGbq1M4vtbV0dLgiycoKKuAkDavImzysCACShKAycbtnOw5CDbCrZxQ+INDAm1fIrm7Z9DaVU9W7JKnFpeUW2q5vUdrzMsfBi3Dr71rNuOfUzUGNwUN9Jz0pk8OJItR0s4XlzVbNzqffm88dMhbntnM/e/v438shqOlh2l3lwv9cdCtEMSZFcwN0DuTogZ0foYd0/wi5AEWThFRb0lQZYZZHE28VP7Ya4PZG/ZepZnLsdD48H0/tPx9/QnPjCeKo4CcLiw0qm76L2/730Kqgv408g/nXXJMVi2fh4WPoz0nHRmjo5DAT7afKzZuPc3HSNa681DUxJZtS+fy57/mbc3rQeQHshCtEMSZFcoOgh1FRDTTpugwBhJkIVTSImFOBvll9VhKk9ie+FGvjz4JZP7TLYvJEsKS+JE1QE8rWUVztokpLSmlCWGJUyMncjoqNFOeYYjpESnsKdoD77etUwaFMnHm09QZzLbz2cVVrIus5Bbxvbmj5cN4Ic/XcyIuCCW796Mm+JO38Czp2REiLORJMiuYFugJwmycBHbDLKvh6+LIxHilDxjDZ41w6lrqKW8vpyZiTPt55JCk8ivyqd/jCUJjHRSgrzYsJhKUyVzR851yv0dJSUmBRWVTXmbuHVcbworalm5N99+/sPNx3DTKNw0Jg6APqF+PDVjKG5eeYR5xuHh1nzLayHEKZIgu0LOdvDwhbB2FkkExli6WAjhYFX1lnpFmUEWZ5M8Yw2RXoMJ8Q6hn7YfoyJH2c8lhSYBEBNu2UDJGTPIORU5fLD/A65NuPasr9EdGjYUfw9/0nPSuTgxnF5BPnzwq6UEpdbUwCdbTjB5cEST3QZ7h/ji5p2HtxrrqrAFwIZX4Y0LocHk6khEG6TNmyvk7IDo4aBxa3tcYAxUl0BdFXjKTJ9wHNsMsrR5E2eT3LIaorV+zLv0JXzdfZvU/w4KGYRG0eDlnwOEOmSb6ZVHV/LytpcxmS2JSmV9JRpFw/0j7j/jezubu8adMVFj2Ji7EY0Ct4yNY8EPBzhSWMmuE6UUV9Zx67g+Ta6pqC9D8SiltjrSRVELAPZ9CfkGyPwBBk1zdTSiFZIgd7cGE+TtgpGp7Y8NsLZ6K8+F0ATnxiV6FEmQxdkoz1hNYkQ4yRHDm53z9fClb2BfTO7HuP/SGYzq037f39yKXBYbFnNl3yub1RMXVBXwxPonCPcNZ0TEqQXTk3tPJsov6szfTDe4IOYC1hxfw/Hy48wcHcdLqzL58Ndj7DxeSu8QXy7sH9Zk/M8nfgbgZFEIqqqelQsQz3v1NafKLLcs6XiCrNeqwPvojb+zvnYHcoFN6I1Xo9deCwxBb3y6levjga/QG5tvvKDXPgmsRW9c1cK5l4DP0BvXotc+ADwIJADh6I2F1jEKsBCYBlQBt6E3brOe6w0sBuIAFZiG3piFXtsX+AgIBbYCv0dvrGvh+X8B/gA0AHPQG79Hr/UEVgGT0BudNg0vCXJ3KzwA9VXt1x9D017IkiALB6qsq8TH3Qd3jfwIEM5nrK7ns20nmDGiF8F+ni2OMTWYOVle22bpRFJYEhtyNvDmjQPbTO7qzfX8d+9/eWPnG1Sbqvk261s+uuojegf2BkBVVf6x8R/Umet4ZdIr9uPnmpSYFADSc9K5adBNTE2K5P2NR6msa+DRKwah0Vj+jgqrC3l287N8e+RbQjziOFrSi5PltUQ4sROIaEXuDmios3yKfHAVlByF4D7tXweVwFD0Wh/0xmpgCpBtP6s3fgl82aWY9Mb5LR/XhgLj0RsftB5ZD3wF/HTayCuBAdavccAb1u8AS4F/ojeuRK/1B2wrSZ8BXkRv/Ai99k0sSfAbpz1/CHAzkATEAKvQaxPRG+vQa1cDNwHvd+Utd4TUIHe3ji7QAwjsZfkuC/WEg1XUV8jssXA6VVX5Ykc2lz3/M3//316Wph9tdezJilrMatuL74aEDqGwupCCqoJWxxhOGpj5v5m8sPUFxkWPY8nlS9AoGub8OMfeveWHoz+w5vgaHhjxwDmbHAP0DuhNjF8M6bnpAPx2bB8q6xrwcFO4cbSlzviTA59wzYprWH10NfeNuI9/jH0bzF7syyt3Zeg91zHL/1Zc8zIoCmxLaz5m89utXf0NcJX1z7cAH9rP6LW3ode+av1zJHrtCvTandavC6yj3NBr30Kv3YNe+wN6rY91/LvotTe08Lzrge9OPcO4Hb0xq4Vx04Gl6I0qeuNGIAi9Ntqa4LqjN660Xl+B3lhlnXGeBCy3Xp8GzGjlvh+hN9aiNx4BDgJjrec+B25t+a/JMSRB7m4528HTH0L7tz82MNryvSy77XFCGDv330hVfZUkyMKpsgor+f3bvzL3ox3EBHkTG+zDlqPFrY7PNdYAbS++sy3U21u0t8Xzh0sPc9fKu6ior2DhpQt5ZdIrjIkaw4KJC8gqy+LxdY9TUlPCvzb9iyGhQ/jdkN+dwTt0PUVRmNBrAhtyNlBRV8EFCaEMigpgxohehPl7sadwD0+mP0lSaBKfTf+Me4ffiy4mFID9uWUujr6HOrbJ8u9/zAgYcDlsew9MjSoLdnwAX89r7eqPgJvRa72BYcCmVsa9DPyM3jgcGAnssR4fALyG3pgElGJJgNsyAUv5Q3t6AccbvT5hPZYIlKLXfoZeux299jn0WjcsZRWljcojbOM7el+A3cCYDsTWZZIgd7fcHRA9AjQd+Kv39ANvraUGWYjWHFkHLyZBYWaHL5EZZOFMx4uruO719ew8XspT05NYcd8ELhkYzvZjpTSY1RavybcmyG0tvhsYMhA3xY09RXuanSurK2POmjl4uXmx9IqlTOo9yX5ufPR4Hh79MD8e/5GbvrqJstoynrzgyfOixOi6/tdRbarmmyPfoNEofPHABP79Gx0Ayw4sw8fdh5cufYk+gZaP8YN8PYnWerNfZpC7n6rC8U0QN97yevQdUFkAGV9bXp/YCv97EPpe3PL1euMuIB7L7PE3bTxpErZyBb2xAb3RaD1+BL1xh/XPW633aks00PI+5h3jDlwEPIwlme0H3HYG9ztFb2wA6tBrAxxyvxZIgtydGuohz9D2DnqnC5BeyKIdJ/cDqqW+vYMq6yulxZtwispaE3ct3UKDWeWLBybw+5R43DQKo/uEUFFrYn9eyzOXp2aQfVq9t4+7DwlBCc0S5AZzA4+ufZTs8mxeuOQFov2jm1176+BbuTbhWnIrc7lDd8d5s5Pc0LChDAoZxLKMZaiqipe7G+5uGsrqyvj2yLdM6zsNf8+m/18fFBXAPplB7n6FmVBdDL2t5bn9LwNtb8tivfI8+PhWCIiCG1souzjlS2ABjcsrOq620Z8baH8dWjXQkUL1bCyL8GxircdOADvQGw9bZ4s/xzKjXYSlDMP9tPEdva+NF1DTgfi6RBLk7nRyP5hqOlZ/bBMYIyUWom22Txg68YuUzCALZ1BVlUeW7+RAfjmv/HYk/cJPJWa2rhNbj5a0eG1eWQ2e7hqCfdvewGJI6BD2Fu1FVU/NRL+y/RV+yf6Fv4z7S5PeyY0pisITKU/w0qUvcc+wezr71s5aiqJwY+KNZJRkYCg02I9/degrqk3V3DjwxmbXDIoO5NDJiiY774luYKs/ts0ga9xg1Cw4shbe+w3UGOHmD8A3pK27LAH+jt5oaGPMauBeAPRaN/RabRcj3gd0oB6UL4FZ6LUKeu14wIjemAtsxpIIh1vHTQL2ojeqwBrAVvecCnzRyn1vRq/1sna9GAD8an1foUAhemN9195a+1yaICuKskRRlAJFUXY3OhaiKMpKRVEyrd+DrccVRVFeVhTloKIouxRFGdnomlTr+ExFUTrQP81FOrNAzyYwBsqkxEK0wZYYdyJBlhlk4QyvrTnIN4Y8HrtyEBMTw5uciw32ITLQiy1ZrSTIxhqiAr3bbT2WFJpEcU0xd3x/B3d+fye3fXcbb+9+mxsTb2TmwJltXuvp5sllvS8773aRu6rfVfi6+7IsYxlg+UXlkwOfkBSaZK/bbmxQVAD1DSqHCyu6O9Se7fgm8AmBsEab0CT/HjTuULAHrnsTopp3YWtCbzyB3vhyO0+aC1yKXmvAUkoxpIsRfw1ccurZ2jnotSewzOTuQq9dbD3zDXAYyyK6t4D7rLE2YCmvWG2NRbGeB3gUmIdeexBLTfLb1mdca207B3rjHmAZsBfLYsH7rfcEuNQan9O4ugDrXeBVLG1AbB4DVquq+rSiKI9ZXz9KK21EFEUJAZ4ARmPpsbdVUZQvVVVt+afwmTrwPWSu7Nq1xzeBlxaC+3b8msAYqMi3lGecZz/UhYPYPmGQGWThQt/vyeP5lQeYMSKGuy7q1+y8oljKLLZktbxQL89YQ1QHdse7JO4Sfjz2I7UNtZhVywzo9QOu5y9j/3Jmb+Ac5ufhx1X9ruLLQ1/yyJhHOGw8zMHSg/z9gr+3OH5wdCAA+3PLGRQV2KVn7s0pY+eJUm4Ze+52AWnGsByC4yF2dLtDu+TYRug93tK9wiYgCib/3bIZ2JDprV+rNzaf0dAbf8LWck1vfBdLTgV6Yz6WDhCnO5V9640LGv35tlaeuQ699t/otUHojaXWxLx5cm6ZEW55dx1LB4thLRw/zKmOFI2PN21Xpzf+E/hnC3f+LZb80GlcmiCrqrpWUZT40w5P59RvLGlY/sd/1Hp8qWr5XG2joihBiqJEW8euVFW1GEBRlJXAFXStPqdtR9bCh7eAhw+4tdzLs126Gzq2QM8mMAZQLfVJQXHtDhc9kO0Thg5uS66qKpX1lZIgC4f5Ykc2Dy3bybBeWp6+flirs8Cj44P52pBLTmk1MUFNa43zympI7h3U7rOi/KJYNHWRQ+I+n9yYeCOfHPiErw5/xe7C3fh7+HNF/BUtju0b5oenm4Z9uWXMSG6peUDbco3VzFryK8WVtdw0Os7eb/mclmeAT+8ErwC4czWEJzr2/hUnofgQjJzV/NwFDzj2WY71ENAbS9eLs4Nlo5DP0Rs7vvCmC1w9g9ySSFVVbTUFeYBtT8zW2n201QbE7uTJk4wefeq3wtmzZzN79uyOR1VyFJalWtqz3LkKvLv2W3en2Xohl+dKgiyaU9VOl1jUmeswmU3NFu4I0RVL07N44ss9jI0PYXHqaLw93FodO7qPpbZyy9ESrm2UIKuqai+xEF0zOHQwujAd/937XwqqCvjNgN/g6+Hb4lgPNw39I/y71Au5pr6Bu9/bSmGFZb1Xea0Jrc958Onmqr9b/l3XeMBHt1iSZJ/2f2HrsOMbLd97j291yKJFi1i0yP7LX1irA7uT3thaKznXsey4t7TdcWforF6kZ50tbrknUCeFxm9ojgAAIABJREFUh4ezZcsW+1enkuO6Svjot6A2wC0fdl9yDBAgvZBFG2qMUF9p+aFelmNJmNtRUSfbTIszp6oqL6/OZP4Xe7hsUCRpd4wlwLvtRGlwdAC+nm5sPa3MoriyjroGc4dKLETrbky8kRMVJ6gz17W4OK+xwdGBzXohmxrMmFtpwweW/83/8pmBXSeMXJFk2Y67rNppa6S6z5G1cHAlXPQQ3PQelGTBZ3eBuaHdSzvs2EZw82pzDdLs2bPtOQpQ6LiHi644GxPkfGvpBNbvti2TWmv30V4bkDOjqvD5fVCwF65f0v1bPjfeblqI09k6WEQPs2xhXmNsezzYdxOTRXriTKzJKOCFlQe4fmQsb/5uZJszxzbubhpGxAWx5bROFnll7W8SItp3Rd8rCPAMYET4CBKD2y4RGBwdQEF5LUXWmWBjdT1XvfwLty7e1Gp3i7d/OcKK7dnMm5LIb0b2sl93TlNVWPkEBMbC2LuhzwVw5TOQ+QP8+A/HPef4Jkty7O7luHsKpzobE+QvsbT8gKatP74EZlm7WYwHjNZSjO+BqYqiBFs7Xky1HnOMnR/C3s9hsh4GTHbYbTvMJxjcfSRBFi2zfbLQy1o+1IH/TirqZQZZnLkjhVUAzL96CO5uHf+nZHR8CPtyy6ioNdmP/T975x3fVL3+8XeS7k0XLYW2lNWyRwUEQbZgwY2A4rzeex1cBz/1VkVQr3LrQNxbFBXBgVeRKgiCILL3ShmFtNBC954Z5/fHN+lM0pU2CZz365VXyDnfc843JeOT5/s8n+diM5qEyDSNp4snn0z5hKSxSU2ONRXnnbhYgt4g8eiqA5zOKWXHmTye+7lxI5afD2Wy+Bc1U/uFMW98z5q0isJyJxfIx3+CzP0w/mlwNb7+4v8GQ++Cba/DhoVQXd62a2grIPNgrf+xjFNgb5u3lcAOoI9CoTivUCj+BiQBkxUKxSlgkvExWLARMRbn/Qfht7cHeMFUsGcTclLEssioh212yhahUIiW07JAljGH6XXRtfkCWY4gy9iCovJqFArw9WhZKUt8VCcMEhxIr40iN6dJiEzz6BvUlwifpgvvYsNFAzL1xRKW/HaCzSdyeO66ftx/dQ++3pXOil1pNWNX7Erj4VUHGBbViSW3DkKpVOBv9Kt26giyXgu/vwChfWHQ7NrtCgVc+xoMmQt/vQnvjRAOVq3l/B4waGv9j2WcAnu7WMyxsGuimbEWbUQkSVqGMM+2PdpK8auyCW/OdsUvQhbIMuYxOVh0MdqCN8PJwiSQ5QiyTFsoqtDi6+7SYgeDIZEBKBWwV1PAmF4hSJJEysViVEoFIb7y8nNHEezjTrCPO1/u0KDJK2fO8EjmjojEIEHKxWIW/XSM3p192X02n1fXn2BCbCjv3jYUTzeRShPgKZycnFog7/5YOEvc9q1o2lEXFze4/l0YdBusfQy+vhX63Qg3fQKqFkqnv94EjwCIvsp2c5dpdxwxxcKx0FWKFAd74tel2RZeMpcZxRngHQIBRi9SOcVCpoMoqtAS4NVyu0tfD1f6hPmxL62AtLwy7v5sD1/tTGdsr2BUl4JdmBMRF+6LJq+c+KhOPH9dPxQKBSqlgjdnD6FboBdzP9nFq+tPcP3gLnx4x7AacQzUpFg4rUDe8wmsfxp6ToZeUyyPix4N928Tq8jH/gfnd7fsOme2wOmNogCwIwv8ZdqMLJCbQldZm5dkL3zDRaTQ4FxtQcu15ZwtOmvvaVzaFGeKH1AubuAd2rwUi2pjioVs8ybTBooqtK2294qP6sTus/lMWbqVfWkFLJrRl4/vbKfmDDIWuapnMFFBXrw/dxhuLrVywN/TlY/vHIavhyv3jI5m6a2DcW2QZ+7hqsRNpaSworqjp902JAm2vArJ/we9rxGuFU2tELu4wehHxb/Tdzb/WgYDbDQVALbAOUvGIXBEH2THQlsBLnYWyH4RIn+pPBd8Qu07lxaw4K8FbMvYxh+3/mHRj1OmeVTrq8kqz6p5rFKoCPcOR1FyoTZ6bMxV1xv0VBuq8bSw8iFHkGVsQWEbBPLY3iF8uTONhAHhPDu9r2zvZif+eXUP/j4mxmyaTM9QX3Y/PdFiCo1CIfKQncrmzWCA356Bne/BwFkihaK5HWq9gyCol3CjaC7Hf4TMA3DD+/YPtMm0GFkgN4WuygEEsskLOdNpBPKhnENsSBMtuf/M+JNroq+x84yclwpdBXPWziG1KLXe9mdGPMPs4gzoZqyM9ouAgjQ+PPwhP5z6gfU3r0fVMK8OkYOsUqjwUMkf2DKtp6hCS5dWFtVN7tuZXU9PlF0rHABrOeRN5Zf7e7o6V4rFsR+EOB5xP1zz35Z1tQXhQpGSLIR2U8fWLQAcOKv1c5axG3KKRVPoKkRraXviZF7IkiTx+t7XCfIIItAjkI1pG+09JafmvYPvkVqUyvxh83npqpd46aqXiPaL5pcza6GioPb14dcFqSSTNalryCrP4nThabPnM7WZttQOWEamORRXaGucDFqDLI6dH39PV+eyecs5AQolTHmp5eIYIPJK8Zmb24wOx/s+h4KzwiLWTKBCxvGRI8hNoatyAIFstOxxkm56W89vZX/2fhaMWIA6X82vZ3+lSl+Fu0quUG8pR3OP8sXxL7il9y3c0/+emu0ZpRm8f/B9clRKQkyvD99w1PpSMkrF6+RA9gH6BPZpdM5SbamcXiHTJiRJorC89SkWMpcG/p6uZBmbvDgFxZng07nlLhQmTDZt53ZCaKzlcdVlsOVliBptvQBQxqGRI8hNoa2wv4uFdwgoVLVd0xwYvUHPG/vfINI3kpt638TkqMmU68rZnrHd3lNzOrR6LQu3LyTYI5j5w+bX2zc5cjISEpu8vGpTcPwi2OjthUqhxN/dnwPZB8ye1xRBlpFpLeXVenQGSRbIlzkBzpZiUZxRu+LWGoJ6gFcwpDeRh3zgKyjLgQnP2tciVqZNyAK5KXSV9m8NqVQZnSwcP8Xi5zM/c7rwNA8PfRhXpSvDw4bj6+bLxnTraRbV+mp+OPUDWoMTfdi2M8uOLuNUwSmevfJZfN186+3rEdCDaPcgNnh71a4w+IWz0cuLeP9eDA8bzsHsg2bPW6otlZuEyLQJkyiSBbKTk5cK6p9bfbifswnkkgttE8gKBUSOhPQdlsfotbD9HRFtjrqy9deSsTuyQG4KXaX9UyxAvKkdPMWiUlfJOwfeoX9Qf6ZEiWUlV5Ur47uNZ/O5zWj1lj9I155Zy6Lti/hN81tHTdehSS1M5cPDHzItehrjuo1rtF+hUDDZM4K9Hu4UugmHkFSFgbNurkzy6c6Q0CFklmVysexio2PLqsvwdpMjyDKtxySKAmSB7NxsfQ2+mQtHvm/V4f6erpRU6tAbJOsDDQZI2yEs1uxJcSb4tkEggyiKLjgLpdnm9x/7EYrSYfQjbbuOjN2RBXJTaCvt72IBENQTzu+DbLW9Z2KRT458QlZ5FvPj59crAJsUOYmS6hJ2X7RssG5yvJAL+gRJu5PwcvXi38P/bXHMJLzRKxRszhJ/1w35R1FIEhOV/gwNFZ31zEWRy3RlcgRZpk2YCrPkCLKTk3VE3P80Dy4cavHhAcYizSat3n5/Dj6bCme3tvgaNqOqBKqK2xZBBhFBBvN+yJIkuuYF94HeU9t2HRm7IwvkptA5iECesADcvGHlHCjPt/dsGnEi/wSfHvmU6THTuSLsinr7RkWMwtPFs0YEN6S4upidF3biqnRlW8Y2yrXlHTFlh2V75nZ2XtjJ/QPvJ8gzyOK4uPJSIgyK2h8XGVsZXK0npKKI3oG98XTxNJuHXFYtC2SZtmGKIPvJAtl50WuFq8OgOeAVCKtuh9KcFp2iWd30jnwvRCPABfNpXx1CsbGGx5SS1lrCB4HK3bwfcurv4kfH6Idb55Ih41DI/4NN4Qid9AD8I2DWV1B0Hlb/DfS6jrnu5sXwWYLVITqDjkXbF+Hn7seTVzzZaL+7yp2xXcey+dxm9AZ9o/1bzm1BZ9DxwKAHqNRX8lfmXzabvrNhkAy8se8NInwiuLXPrVbHKkouMFHpz44LOzied5wTBSeYhBcUZ+KqdGVA8ACzArlUWyo3bpFpE6aIYUAbbN5k7EzeadBXQ8x4mL1CFJV9d5cQzs2kSYGceRB+ekjYo/mGQ9YxW8y8dZhSFE1Fza3FxR0ihpnPQ972hnieA6x/dss4B7JAtoZBLz5A7O1iYSJyBCQsgdRNYsmqvSnQwJ+vC0sbK22uV6hXcCzvGE8Nf4pOHp3MjpkUNYn8ynz2Z+9vtG9j2kZCPUO5u//dBLgHWIw0Xw78evZX1Plq/jXkX7ip3KwPLs5ksk8UOoOO57Y/B8Akj9pc9SGhQzhZcLJeRL5KX0W5rlyOIMu0CblI7xLAJFbD+kOXIXDd25D2F6xLbPYpTP//heYEcmmOiEp7BcOtX0DYADsLZGORe1tTLEB8F184BNV1Vjsz9oHmTxj5oGhNLeP0yD7I1tAZ/R3t7WJRl2F3wcXDsP1tyDre+rkNvh3iplsfs+kl0eIaoLJQLMM1IL04nXcOvMO4buOsdssbGzEWd5U76zXr66VglGvL+SvzL27qdROuSlcmRE5gvWY91frqpgXiJUa1vpq3D7xNbGAs07pPsz5Yr4XSLAZ2iiNUfwF1vpp+Qf3oog+CbJHHPSR0CHpJz+Hcw4wMF3lzq1JWATRKg5GRaQmFFdWolAp83OWvEKcl6ygoXUX7ZICBt9Z+t4QNgGF3N3kK0wpCowhyUQZ8dzeU58K960QH2M79IHUz6KrtIyBLjAK5rUV6IBwqDEshcz9EXwWVRbDxeXD3b9bfTcY5kCPI1tBViXtHcLGoy9QkGDwXyrKh6FzLbxcOiQ8vc0UGJi4cgiPf1n54mqnYLdOWsXD7QlyULiwYscBqZzYvVy+mRk9l9anVnC6o7fD2Z8afVOmrmBw1GRAFfWXaMnZesDK3S5TvTn5HRmkGjw19DKWiibdmaRYgofTrwoTICYCI0uMXIfbptQwMGYgCBQeyRJpFUVURHx3+iNERo2WBLNMmiiq0+Hm4yN0YnZmsYxDSp75YnfQ89JgAyY9b/34w4tcwxUKvgx3vwrvDhdi+8QMRnQbo3F8EXPJO2fqZNI/iTPAMtE3KZLfh4j59BxxdDe9cIQoQJywAD7+2n1/GIZB//ltDWyHuHaFIry4qV7jh3dYfX1EAH0+Ab+6Af/wh8psbsvE58Owk2mR+c7sQ44jOQZIksSl9E//d/V+yyrP4z+j/0Nm7c5OXnR8/ny3nt7Bo+yK+mPYFKqWKjWkbCfQIrHFdGBk+El9XXzakbWBs17Gtf45ORml1KR8e+pAR4SO4skszvDNrlgsjuDFoBNsytnFt92uhaj0gQclFfAO60atTr5o85GVHl1FSXcJjQx9rvycic1lQVKEjwOvyWuG55Mg6JqKfdVGq4JZlTX8/GKnJQS6vhotH4H8PiCK1XlNg2isQ2L12cOd+tdc1/bsjKb7Q9gI9E16BEBILW14FfRWED4Y5qyBiqG3OL+MQyALZGjUpFg4mkNuKZyeYvRI+mSjE7z2/1o+Sp24Wec5TXhL2clATQc4szWTxrsVsOb+F3p1689rVrzE4dHCzLhvoEUji8EQS/0zk65SvubXPrWw9v5Vp3aehMvaqd1W5cnW3q4VvskGLq9KxcxyzyrII8QoxG/Et15ZToauw6kQB4gfH8zuep7CqkMeGPta8qFxNwUkX+gb15debfzU+Nn4BlFyAgG4MCR3C2jNrySzNZIV6BQkxCWbbT8vItITC8mrZwcKZKc8XnyHmhKpnJ5j9NXwyyfz3Qx3cXVR4uqpEBPmneVB6EW79EuJmNO4gF9QTVG4itQM7FLG1tYteQ3pNgb2fwZQX4Yq/iR8X7Yg6Nk4CVsSlqOcaH7sAF4BdcSnq6erYuLuBV4EMwA1YGpei/tjMeYYA8+JS1H9Tx8Y9Adxu3OUCxAEhxts3dQ6LARbGpajfUMfGBRr3RQMa4Na4FHWBmevcBSwwPnwxLkW93Lh9IzDT3DGOhpxiYQ2TQHYEFwtbExoLN30EmQfg50ehqtR4KxHRY/9IGP53kTsGosIZ+Nemf7H74m4ej3+cb6Z/02xxbOLa7tcytutY3j7wNt+f/J5yXXlNeoWJSVGTKKoqYu/FvbZ4pu3GweyDTFk9hTt+uYOU/JSa7ZIkse7sOhL+l0DC/xLYc3GP1fMsO7qMdZp1PDL0EfoFNzOyUmNZ1OAD3/S4TqFembaMJ7Y+gUEyMG/IvOadX0bGCsUVWrlAz5nJPi7uLUVyQ+Nqvx9W3Q7VZRZP5e/pSllZqRC+Q++EvteZb6+schUpHfYq1CvObLuDRV0mLoInz8CIf7S7ODZSBvRXx8aZfq1MRojhunwTl6IeDIwDFqtj48wt7T4NvAUQl6J+NS5FPdh4zFPAlrgUdX5civpEne3DgHLgf8bjE4Hf41LUvYDfjY/rYRTRi4ARwHBgkTo2zlTB/yXwYMuffscjC2RraC/RCLKJ2AQY9zQcXgX/jTDeugqvygnPiAJAjwBQukBpNhdKL3Cy4CTzBs/jrn534aJs+QKEQqHg2ZHPolQoeXn3y/i6+TI8bHi9MaO7jMbTxdOhm4ZIksSSvUvwd/PnfOl5Zq2dxSt7XiElP4X7N97PE1ufIMQzhFCvUB7Y+AB/nPvD7Hm2nt/Km/vfZFr0NO7tf2/zJ1CcIV6Xng1cQ2oEshDQQ0JF/t/hnMPMjp1NhI+NlhhlLmuKZIHs3JhEauf+lsfEJghnizOb4YsbLPrv+3u64lt0Agy62nxjS3Tubx+BrKsSBYO2SrEAULnYo9jwF8DkuzoHWGluUFyKOhtIBaLqblfHxvkCA+NS1Oa6wlg630QgNS5FnWZ8fD2w3Pjv5cANZo65BthgFNsFwAbA1DlljfFaDo8skK2hc9Ac5DZQra9m/h/zmfTdJHHL2cC1fQbxx6j7YPJ/xO3mT2t9HJVK8A6Bsmx2XBC+j83KkbVCmHcY84fNR0JifLfxuKrqf9F6uHgwJmIMG9M3Ulxd3Oj44upi/rnhn3x/snXtUW3B5nObOZhzkHlD5rHmhjXc0usWvjr+FTN/nsmhnEMkDk9kZcJKlk9dTq+AXjy6+VF+Tv253jnOFp0lcWsifQL78Pzo51tW8FScKcRww2M8O4nXqzGCHO4dTmevzvi4+vD3AX9v69OWkQGEQJbbTDsxF4+AVxD4NFE7MvROmLlcBE0+T4CSxq3r/T1dCS0xRqSbFMj9RPpXWV4rJ94yqs6cJe3Ou6g8aPQstmWKhX1YBcxWx8Z5AAMBM91KQB0bF4NIizjdYFc8cNTMeC+EgF1t5nSzqS+cO8elqI1LmFwEzL2IIoBzdR6fN27DKJjd1bFx1nMPHQA5B9kaNSkWDuZi0UokSWLxrsVsSNvAtOhpeBiF/+GcwzyZ8ydfXfFPenfq3fhA7xAozWFH5g5CPEPoGdCzzXO5pfctFFcX1zgwNOSufnex6dwmntz6JO9OeLcmR1lv0PPvrf9me+Z2dl3YRVffrjUWZh2FzqDjzf1vEu0XzY29bsRV6cqzVz7LdT2vY3P6Zm6Lu41QL5Ga0smjE59c8wmPbH6Ep7c9zY+nf0SlEM8ltTAVF6ULb45/E8+Wem2XXDBvV6RQCKN6YxGfQqHgqeFP4aJ0sehRLSPTEgwGSY4gOzumQrnm/Cjvex14fCdSLT6dAv/cUm/lyt/LlW75J8T3RFMRWlPEOvsYdG/fImx9SQnnH3qI6rNnKfzGhzBvxGejFXI/+IDy3dZT4uxJXIr6sDo2LhoRgf3FzJBZ6ti4q4Aq4J9xKeqGYf9wwFy7xBnAXw3Hq2Pj3IDrEOkX5uYjGXOjW0o20AXomF9KrUQWyNbQOqAPchv49sS3rD61mvsG3McjQx+p2Z5dns3stbN5ZNMjrJq+Cn93//oH+oRiKMti14WLXBVxlU2snZQKJfcNuM/i/oEhA3l6xNO8sOMF3jzwJvOHzQfgrQNvsS1jG4/HP86Pp3/k8S2PszJhJd18u7V5Ts1lTeoazhSdYem4pfWKCAeFDGJQyKBG471dvXlv4ns1KRgmovyjeHjIw3TxaUVUozhDeHGawy9CCGgjE6Mmtvz8MjIWKK3WYZDkJiEOy/GfhBDsNtz8foMestUQ34KUrphxotveF9fDyfUwaHbNLn9PV3poT0HUkKYFt0kgZ7WvQJb0ejIff4Lqc+dw79WLkm176DwFFFYEfNmu3eS88SZuPXug8vFtt7nZgDXAa4g844ZR2G/iUtTWCk0qAHNL4g2jxCamAfvjUtRZdbZlqWPjwuNS1BfUsXHhCLHbkAzj/Ex0Bf6o89jDOBeHRhbI1qhxsXD+CPLei3tJ2p3E2K5jmTe4/vsn1CuUpeOXcs+6e3h8y+O8P+n9+vnF3qGk5KkpcFe1Ob2iJczsPZOUvBQ+O/oZsZ2Exdyyo8uY2Xsmd/W7iwndJjA7eTYPb3qYFdeu6JD2yRW6Ct49+C4DgwcyMbL5wtNN5caCkQuaHtgc9DqjZZEFYe3XRbiQ7Pm0dlvPidAp2jbXl7msKSo3dtGT20w7HuX5sPrv4r3+0C7zgjX/rEgfbKnVWvRY0RUvdVM9gRzkpifacA7CZ1s52IhPCHiHGp0s2o+cN9+idMsWwhYtROnjQ+YTT1KR54qXhc9MSZLIfu01XMLC6P799yg9HCCt8ptVlvYsAwrjUtRH1LFx41p4VjXwf/U2xMb5A1cDc82MN5eXvAa4C0gy3v9k5rj1iCJB01LDFIxRaHVsnAIIQzhgODSyQLbGJeJikVmayf9t+T+6+nYlaUxSTbpCXQaFDOLZkc+ycPtCXt/3Ok9e8WTtTp8QdkjlgG+HCmSAxOGJnC48zcLtC1GgYGjoUJ4aLlZ7uvl149WrX+WBjQ/wzLZnWDJuSdMNNoCM0gwySzNbNZ8t57aQXZ7Ny2Netk+ThIz9sPYxYbgfPtD8mLD+oslL8vzabf7dYN5ep38ty9gfuc20A3Pwa+HLm3tCNLGIGtV4jEmctlQgK5UQczWc+QMkqUZ89zScQaWQ0IUNap6g6NyvXQv1in/5hbyPPiJg5kwCZs/GUFoKKgUlmX54WWjiUbL+NyqPHCH8pZccQxxbIS5FfR6jC0Urjk1Rx8b5q2PjfONS1CXGzTcCv8WlqOtZlahj47wRThn/bHCaJOBbdWzc34A0jJ596ti4eOD+uBT1fXEp6nx1bNx/AFO+ygt10jeGATvjUtS61jyHjkQWyNZw1EYhLeTdg+9Sqavk86mf4+tmeenoxl43kpKfwpfHv2Rc13EMDzcu0XmHssPDlV7+MQR7BnfQrAWuKldeH/c6s5NnC+eIcUvqFfWN6jKK+cPm89re11h3dh3Xxlxr9Xwb0jbw763/RmvQWh1njXHdxhEfFt/q41tFZRFsehF2fyys925ZBv1uMj921MMw6DaQDOJxxl5YdRvs/RSufKjj5ixzSSILZAdFkmDfZ6JpRf5Z2LvMgkA+BgqlaHTRUmLGi85x2cdrBHZU1QkAigMHENicc3TuB3s+EakeNrZHkySJi/95Ec9Bgwh7VnR3Vfn64h3jR8k5CJWkRoENSaslZ+lS3Hv1xP+G6206n+aiN0goAKXSctAlLkXtY2bbHxhTF+JS1J8DnzfjcsuAWcAn1o4zCuZGhXRxKeo8hLNFw+17gfvqPF5mvFZD7gDea8Y87Y4skK1hajXt5AL5cM5hRoaPpLt/9ybHzo+fz6Zzm1i6bylfJ3yNQqGgwqsTB9zdmR1oh+5HQJBnEN/PEI4VjfKjgTv63sHqU6tZdnQZ07pPsxjZXX1yNS/sfIGBwQN5aMhDKFFCxj7Y8gqMS2y6AhtR9DY4pGXez21GVwXLpoq8weF/N7Yzbfx3qEGhEEuZJmITRPvYra/CkLnWj5WRaQJZIDsomj8h7zTc+KFYadr3GUxNAu8GQY2sYxDUq3WrST3Gi/vUzTUCObwshSwpgFJVUDMFcn+xOpuXCiFmisLbgC47B31BAX4PPYTCrdaCzS9GwYVTEpXHjuPZv/73WOHq1VSnpdH1/fdQqDrEz7gRf1u+h2qdgc/vGY6bS7ubi70PzGzvi1jhaFyK+nc7Xr/ZyALZGiabNyd2sSipLkFTrGFGjxnNGu+ucmfe4Hks+GsBv6X9xjXR17BfV0S1UsGVPlFNn6CdMCeMTSgVSu7pdw8Lty9kR+YORkXUiZpIEiTPZ1nhUZbqLzI6YjSvX/26yFfOPQ0b/gtVRaDeAMMariQ5CFtfFRGb2Ssh1nqE3CKTnoMPx8K2N2DSIlvOTuYywySQA+QcZMdi7zLhW9/3eggfBLs/hIMrYPQj9cdlHYWIYa27hn9XCO4tvJFHiVqWwKJjbDfEEFjezFW5mpbTR20ukKvPpALg3rNHve0+nQtBCSW//VZPIBvKysh5510844fhM26cTefSEg6eK6SwXMsLa4/x4g0D2vVacSnqSkSzDrtgrrufoyL7IFtDWymWolrREMNRUOepAegb1LfZx0yPmU7PgJ68tf8ttAYtO8rScZUkhrk4buQxISaBUM9Qlh1tsKKzbSnvnV7NUv1FpundeHvEIiGOK4tF2oFSBYPnwumNUKCxy9ytcvEobFsKg+a0XhyD+MIcMBN2vl9jAScj0xrkCLIDUpoN6p9h8O0ioBMaB5FXwr7PwWCoHVdZDIVpLc8/rkvMeND8JVa2qkrwKj7DEUMMxRXNFMghfUChapc85KrTQiC7xcTUbjTocdFm4dWrMyW//YYkCVcySZLIefsd9Lm5dH78cfvUlCDeT4XlWiICPPlqZzpf70q3yzxkGuO8yq8j0FUKBws7vXFswfE8YeDeEoGsUqp4bNhjPPT7Q/xw8gd2FKgZUlmFZ0VRe02zzbip3Jjbdy6v73udY7nHRMvmk7+m9fIaAAAgAElEQVTx685XeT80mOtD4nl+/y+oPp8Bc1fDr/8Wy5F3/gSB3eHQ17BvuWNFV/U6WDNPRIWuWdz2801YAMd+hD+S4LpW1XjIyFBYrsVVpcDT1T7L0TJmOPCV6GQXf0/ttvh74Ye/w9kttakRaX+Je2sd9Jqix3gRnT63C5QuKJA4InUnprkC2cVdRKHbQyCfSUXp54dLSJ0Us9JskPT4jezPxeW/U3XqFO49e5L98ivkL19OwKxZeA7u4LS5OpzLLwfg6Wvj+HbvORatOUrvzo3SjYlOTNYDRwAFoAfmaZIStls7d3RicqkmKcEnOjE5GhilSUr42rj9biBek5RgzRKu3YhOTA4HPtYkJUw3Ph4IfAj4AQbgCk1SQmV0YvIs4BlABazVJCX82zjeHfgCUfCXB8zSJCVozFxnKvCm8fhPNEkJScbtq4BnNUkJp6zNU44gW0NX6fQeyMfyjtHFuwuBHs3KDqthTMQYhnUexjsH3+Fk0RmurKwSHzQOzMzeM/Fx9RFR5NxTqH/6BwtDghkaMohF13yE6o4fxXN4dwSc/FXk53UfI5YNe08VXzK6ans/jVp2vgeZB+DaV8GrZf9/ZukUDVfcBwe+hJwTbT+fzGWJqUmIvSJuMg0wGESkOHoMBPeq3R53HXgGitSLqhJY97RYNfMJs+yR3ByirxKrqqmbxOcTcNTQncLyFnx2du4niod3vFt7s4Fgrj6dintMTP3XpnHFzHf8GFAoKFm3jgtPP0P+8uV0uuMOwhYtbPN120JanhDI3YO9eWv2ECICPLn/q/3mhlZokhIGa5ISBiEs0/7bgstEA7e1da6tITox2Vwgdj7wcZ39XwH3a5IS+iH8k7XRiclBwKvAROP2sOjEZFNx4N+AAk1SQk9gKfCymeuqgHcRXs59gTnRicmmSOH7wJMNj2mIHEG2hrbSqfOPQQjkfsEtX05TKBQ8Nuwx5v4irBGvlDygzLEFso+bD7f2uZXPj33OoeObeSLIG3/PYJaMf0M4X0RdCXevha9nQZ/bRMGbiWH3wIlf4EQy9LvRfk/CRF4qbH4J+iTYdj5jH4fdH8Hhb2His7Y7r8xlQ7HcRc+xOLNJpE00XP1y9YAht8OO90RQoDhDfM5NWlSvE16LcfeFrleIQr3gXkh+XcipDKCoogWuXd3HwtHvYf3Ttds8A+GRg20qIq46cwaf8ePqbywRAtklKhbPoUPJff8DkCSCH/4XwQ88YPcfeunGCHJkkBc+7i58fGc8N7z7V1OH+QEFANGJyT4IL+JOgCuwQJOU0NCbOAmIi05MPggsNx7bJToxeR3QA/ifJinhSeP53geuADyB7zVJCYuM25MQXfV0wG+apITHoxOTZwALADdEJPd2TVJCVnRi8nPG88YA6Qg/5brcbDwOhEfyYU1SwiEATVJCnvF6McApTVKCqfPfRuNxvwPXA88Zt38PvBOdmKzQJCXU7eo3HDitSUo4YzzfKuNxx4E/gc+jE5NdNEkJFl+4cgTZGrpKp3awKKoq4lzJuRalV9RlUMggpkRNIdQzlDiPYCg116HSsZgbNxeVBPd6VpPv6s6bk96pb00XPhAeOwbTX6+fOtNzIvhHimiLI7DuKVC5QcIS26b4eAdDUA/ISWl6rIyMGQorqmWB7EgcWgVeQRBrphB72D2ijsazE/xtA8x4o23i2ETMeLhwCM7+iaLLUHzcXWpy05vFsLvgqfOQmC5u966Hinz4q/WpX7qCAvR5ebjH1C/Qq6m58O2C/4zpIEl0fnYBIQ8+aHdxDJCeX0aQtxs+7iJe2auzL788MsbcUM/oxOSD0YnJKQiLtv8Yt1cCN2qSEoYC44El0YnJDZ9YIvCnMQK91LhtMMLubQAwKzox2dSO9hlNUkI8MBC4OjoxeaAxmnsj0E+TlDAQeNE4dhswUpOUMARYRf2obF9gkiYpoZ44jk5M7o6I/hptwugNSNGJyeujE5P3Rycmm85xGugTnZgcbYwy3wCY5hgBnAMwCtwiGlvS1Ywxct64DU1SgsF4/satb+sgC2RrOLlANuUf9wtqfUHG4jGL+XbGtyi9Qx0+ggwQ4hXCda7BVCsVPDf6BfPPXWnmZa9UiQ/ts1uFu4U90WyDU+thzP+BX7jtzx/cW06xkGk1RXIE2XEwGESqQ89J4OLWeH9QD3j0CPxjS9vSKhrSYzwgQelF6DIYf0/XlglkEJFoD39xixwJ/W8RqRbFF1o1peozZ8Rpe5oRyCo38AoiYNYsem7dQuDtt7fqGu1BWl45kUH1u8BGBXmbG2pKsYgFpgJfGIWwAlgcnZh8GBFljQA6N+PSv2uSEoo0SQmViKiqyabq1ujE5P3AAaAfQugWIYT4p9GJyTcB5caxXYH10YnJR4AnjONNrNEkJZhrJx0O1I22uQBXAbcb72+MTkyeqElKKAAeAL5BRHw1iNxrW5ENWGhHK5AFsjW0FU7deexYnsjpam0EGYTtW5BnkGhO4QQRZIB/l+r5ki5Mj5nesgOH3CFy6/Z91j4TM2EwwP4v4M1BIvpTF0mCDYvAtwuMaCfbuZBYyD/jWPnWMk5DUYWWAC8zYkym48k6AuV5IqJrCb9wUNk4m7LLUDBZb3YZgp+nK0UVbfw8mbBAFBpuSWr+MdoK+O5ueDGMqrdEKprbr3Ng00u1Y4ozwTcclEoUCgWuoaFtm6eNSc8vJzLQq+mBddAkJewAgoEQhLAMAYZpkhIGA1lAc4RLVZ1/6wEXY3T3cUTe70AgGfAwRmmHI9IZpgPrjMe9DbyjSUoYgOi4V/e69Trz1aGiwbjzwFZNUkKuJimhHPgFGGp8nj9rkhJGaJISrgROACeNx2RgjCYbo8v+iBSPutSMMdLVuM2Eh3EuFpEFsjV0VcLFwkk5nnecrj5drXoINxvvEBFBlqSmx9oTScIz9zSDQyy0YbaGb2fRVOPgCpF/3h5kHYfPpsGaf0F5vrg/t6d2v3qNKF4Z/3T75b+H9AFJD/mp7XN+mUuaonI5guwwpG4W9zHjOva6KhdR4AwQPoSA1kSQGxLYXThv7P8Sck42Pb6yCL66WTjzDJpFtecgFG4qXPuNgq2vwMGVYlxxJvhZDRTajWqdgczCCqJaKJCjE5NjEc4MeQhxmK1JStBGJyaPpzYSXJcSwHIb3Vr8EMK2KDoxuTOiwM2U5+yvSUr4BXiM2tQEf2pF513NnP5JRNGgifXAgOjEZC+j2L0aEdEmOjE51HjfCXgQY/c/YE2d690CbGqQfwyizXWv6MTk7tGJyW7AbONxJnoDR61NVBbI1tBVOLWLxfG8460q0DOLT6hIOakqaXqsPSnNguoS0SmqNcTfCxUFQqjaEoNBRDU+HAO5J+H69+Dhg+KD+5u5YllRr4XfX4CQOBjcjgXHIX3EvZxmIdNC9AaJ4kodfrJAdgzObBafF+2RitUUox+BcU+Bd1DrUizMMfYJERjY9IL1caU58Pl0YTV3y6cw402qtJ1x79kHxZyvhaPHz4+ITqkljiuQMwsrMEjQrXkC2ZSDfBCRdnCXJilBD6wA4o1pDncC5gpMDgP66MTkQ9GJyY9ZuoCxUO6A8RxfA6ZqQV9grTGNYxvChQJEodx30YnJ+4Dc5jwJTVJCGZAanZjc0/i4AHgdIWgPAvs1SQnJxuFvRicmHzfOI0mTlGD65fQpEBSdmHzaOJdEgOjE5C7Ricm/GM+rA+YhBLga+FaTlHDMOK4zImXlorW5yi4W1tBWgq9zRpALKgvIKM1gVp9ZtjmhjzGlqSwHPPxsc872INf4/glupUCOHguBMaJYb+CttpmTXicixYe+hoGzhaext7GeYPZK+GSSEMkDbhHezHNWiZzo9iKoF6CQBbJMiymplJuEOAzaCkjbIawb7UG34TV5zTYTyD4hMOph+GMxaXt/JSp+WqMh508dwueHuXhXZfNr39dJzx5I/Jk8gs6cwSs+HlSuMHM5fDwOVs0VKSixCW2fWzuQZnSwsJBzXA9NUoLZLwVNUkIucKWFfT7Gey0wocHuz+uMm17n33dbmEKjJHajW0ZDxww0SQnPWTiHiXeAuzE6WWiSEr5CWL01PE9D9wvT9krMtMvWJCVkAtfWefwLImWjIbchfJetIkeQreHERXq2KNCrh7fReN3BvZDJNfp+t1YgK5Wi8jt9B2Sr2z4fbSV8e4cQx+OfgRs/qBXHAJ37im0Ze2Fdouh+1Xtq269rDTcvCIiEXFkgy7SMmjbTskC2P+k7QF9V2wTEjgR4uVLY3FbTTXAkci7npWAifr6Nne/fT2lxAQCVFWXs+PRxQr+aAOV5zKpI5OG9wbz220kWrtyN7sIF3HsYC/S8g2D211BZKP5Gvo4ZQU7PE2m6UUEtS7FwdjRJCf9DFN3Zi0KE3Z1VZIFsDScWyKYCvbigONuc0MdY2NCeThYVBW0/R+4pcPVu2wfi4NtF1fPeZhTrVRRYzsuuLIYVt8CJX+Ha1+DqJ81btvW9Dq5OFAWCk1/omM6NIX3kCLJMi5HbTDsQqZvF51TUKHvPBD9PV6p0Biq1bTMZkCSJxRvPMVf1KvuCpjMyayVlrw9j51fPkfvKMK489zGH/cehvX8n37z4CKdemsbDE3rCOQ0Abj3qtJgOGwA3vAcoIKR3m+bVXqTnl+PuoiTEx3lTOVuLJinhk6ZHtdu1P7Pmf2xCFsjW0FU6rYvFsdxjRPlF4evWnLz8ZuBtFMjtFUHWbINXYuoXrLWGvFPC2siclVtz8Q6CvtcLh4nqcsvjMvbDqz3hi+tqI9cmTv4GH4wWUZ6bP6nflMQc45+CJ1Jta8VkjZA+Ys4GW7rmyFzqmKKE/l6yQLY7ZzZDtxHg1vTyfHtj+sFU3MY0i62nctlxJo+7Jg5hxMNfkpKwmjKlLyNPL0VCwZEJXxA/fzUh4ZG4qpS4qpT0DvMlsjgLAPcePeufsN+N8MRp6DHRzNXsT1qecLBQKu3vxyzTGFkgW0PrvBHk4/nH22Tv1givIEAhcpDbg8PfgGQQ3ZXaQu5J4fPbVuLvhaoiOPaD+f2SBBsWii+nzEPw/ijYvFh0wPvmDvh6pnBAuWutyC1uDp4BbZ93cwnuI5YeCzQdd00Zp0eOIDsIpTlw8UjHu1dYwPR6KGyDQDYYJJJ+TaFboCe3jYgEIPaKSUQ+tYcjE74g5Mm9DBh7faPjeob60K0kG0nlgltkt0b78Q7umFW5VtAaizeZjkMWyJaQJKOLhfMJ5NyKXC6WXbRd/jEIWx+voPaJIBv0kGIsWlX/LBwfWoO2AgrPtT7/uC6RVwq/YEud9U7/Dpo/YdzTMG8P9L0BtrwMbw+FU7/BxIVw/zbR3toRCYkV97nNsFOSkTEi5yA7CGe3iHsHyD8GkYMMtKlQ76dDGagvFPP4lD64u9TWo7m4ujFg7PV4eJqPlHcP9iaqJIvS0C4oXJzHd0CSJCGQL7P8Y2dCFsiWMOhERNMJUyw2nxPemDYVyCDykNsjgpy2XVQa954GxRmQub9158lLBSTbCGSFQhTrZewTLVXrYjDAxkUQEAXx9wj/5Js/hjt/giv+Dg/uFF3wzHW2chRMOXlyy2mZFmASQLLNm51J3QweARA+2N4zAWojyEWtLNSr0ul5bf1J+nXxY8bAltWPuLuo6F6ew8WAsFZd217klVVTXq1vsQeyTMfhPD+3OhqtscGKE0WQs8uzeWXPK6zXrKdXp170D+5v2wt4hwifYVujXiP+zglL4PQGOP4TdI1v+XnyjHnArfVAbsigWbDxOdH+9IYPavOaj3wHWUfh5k/r+2THjHOYJc8m8fAX3aWaY8h/OZGdItJ86hZexl4LEcPsNycHoqhCi7uLEg/XdrQhlLGOJIn845hx7WsH2QJqBHIrIsiSJPHhljNkFFaQdPOAFufjGqqqCC7JZb/nFS2+tj1JyxP1LXIE2XGRBbIldMZOag4ikHMrcqnQVtDNr3GOlSRJrExZyVsH3kKr1zJv8Dzu6X8PbiobRzB9QuHcbtue02AQaRU9J4F/BHS/Wgjm1rg5mArlgnpaH9dcPDuJCPHO90Su7vSl4tybXoSwgdDvJttcx14E95YjyHUpyoDlM4RTi8IoPCS9sOC7s5HV52VJUbm2Zjldxk7knhQrbT2etPdMagjwFN81Lc1BTs8r59mfjrLlZA6T4jozpldIi69drdGglCSOuASi1RtwVTnHwnh6vrB4iwy0f5GljHlkgWwJk0Bur3a/LSTxz0QO5xzmy2lf0iewT719y48tZ8m+JYzqMopnRjxDpF9k+0zCux1SLDL2QskFiLtOPO57neiAdPEIhNdpF11VIiIn1pqU5J4C/27C59dWXLNY2AX9tgA+GCNyk4vS4bo32+aU4QiExIq22pLksEUsrUJb2Vj4B/eyXu2vrYBvbgdtuUiRCTXaI/7vARGtkwFEhFAu0LMTkiRW19YlCnu3npPsPaMafD1cUCisR5A1uWWUVtU6a205mcNbv5/CVaVk4fS+3HmluQ7JTVOdmgrAWe9Q0vLK6Rnq06rzdDTpeRUoFNC1k2NoDJnGyALZElrHiSDnV+az5+IeDJKBRzY/wsqElXTy6ATAXxl/sXT/UiZHTWbJ1UtQtKfQ8QkRAqKqFNxt9CF0/CdQukLva8Tj2Omw9jERRTYJ5IoC+HiiiDDf9bPlc+WetE3+cV0UCtH2ufdUkW6xfznEjIceDZsSOSEhvaG6VESj/Lvaeza2Y/3TsPfT+tt8wmDqf4XtU8P3iCTBz49C5gHRXCC0jnd4SG/R5KWySKSlXOYUVlTLAtke5J+FX54QKWhhA2HWCod6zyqVCnzdXSzavC3frmHRmmONtl87IIyF0/sR5t/679mq06lISiUZPiGczi51GoGcll9GmJ+HnK7kwMgC2RI6x8lB3pS+CYNk4NmRz/Ly7pd5YssTfDD5AzJLM3li6xP0COjBi6NfbF9xDLVeyGXZthHIkiSEcMy4Wosz72CIGg3H18CEBcLh4vt7IT9VpDlYEiqSJNo0d7u97fMyh1cgXPcWXPlQbdttZ8fkZJFzwqG+bNvMhYMQPkg0XwHxXv7rTfj+HjjwFSS8JtqJm9j5HhxeJRxJGrakrfkbnYRuzpXj2B4UVeiICLD/Z+Jlg64atr8FW18VgYSpSaIQWOV4X93+Xq4Ullc32r49NZcX1h5nfJ8QbhtRGyUO8XVncLe2WVvqS0oo2bwZ165dqVa5kppT2qbzdSTnZIs3h8fx3mWOgq5K3DuAi8XGtI1E+EQws/dM3FXuLPhrAYt3LWZ/1n6UCiVvjX8LL9cOeKOZuumV5tQXGK3lwiEoTIexT9TfHncd/PqEEG4HvoLUTTBoDhxaKRqKNBQxINI0qkttH0FuSEifpsc4C8HG55JzAno6ppF+i5EkIWYHzxHFdSb63gC7Pxb54++OEBFlE8XnxcpFw9ch1Hpq56TIAhnRCKJvuJU0JxnbodkGa+eLlvB9rxfi2M8xWyaDyEM+mllMRmEFEQEibeBcfjkPrdhP92Bv3pozBF8PsfpQtmMHua98RNmDD+A93HJzJEmSKPrpJwq++BL/m2+i0+zZKFQi4qrLzSX97/+g6tQpIpYsIeKAC6eyStr/idqItLxyru7d8pxrmY7DyZMo2xEHcbEoqipi14VdTI6ajEKh4Pqe1zM3bi7fnfwOTbGGJVcvoatvB0X/vI1vZlu1m1avEcVQfRoI3rjp4v7nR0T05Ir7YMab4Ool7I3MYSrQa2+BfCnhHQyegeIL+FKhOBOqSxo3i1GqYOT9MG+3iMBFX1V7u/IhuPED8znlnaJB5W77v5HmL/jpIfFj04mQc5A7iPXPwOcJohbmtu/g1i8cWhwD3DemO+cLypm0ZAsfbU2luFLLP77ch94g8fGd8TXiGKBs+3bKd+4k/c67yEx8Cl1+fqPzVaWmkn7X3VxIfAptdjZZ/3kRzazZVBw7RvX5DDS33061RkO399/D75op9Aj14bSTRJArqvVkl1QRJTtYODRyBNkSNS4W9k2g33J+CzpJx6So2oKM/4v/P7QGLYNCBjEifETHTcanQbvpyiIRlStv/OHWLI79D6JHi9bOdfHrAl2HizbNUaNF5ETlKv5tqWDKZPFmiy56lwsKhYiI51xCAtkkZE2pEQ3x6wJTFzf/fEqV+NFlq79RWZ7owHjwK+P5XWHGG7Y5dzuj1RsordLJArm9yT0NO96BQbcJ60tbFh23I9cPjmBoZCeeW3OMxb+k8ObGU1Ro9Sy7+wq6B9cvkNWXlKDy9ydg9mzyli2jZPNm/KdPr2n0oS8toWjNzyg9PQl7/nkCbrmZ4l/XkZWUhGbmrah8fZEkichPP8Vr6BAAeoX6sGJXHgaD5PCtm88VCIu3bnKKhUMjC2RL1Ahkd+vj2pmNaRsJ9QplQPCAmm0uShcWjFzQ8ZOpiSDnwNHVsO4pIZbdWpmPrFSKZhzmuPIh2KmAmcuFOAZRGLf+KdEtL6CB3V3uKTEP3/DWzeVyJaSPKJS8VJwsTELWlqkwIX3g/N62n+fg16KAsKoERj8qik/3fyFe6w668nEss4gj54sAKK/WA+DvKX9ttCv7PgOlC0xa5DTi2ES3QC8+uSue345n8er6E9w+IpJxfUIbjTMUl6AKCCD0sUfxnzGdiy+9RNGPP9YOUCjwv3YaoU8+iUuQCKD4T0/AZ+wYct54g7Ldu4lYsgSPPrXv856hPlRqDWQUVji88DR5IEcFyRZvjoz8SWcJrf1t3sq15WzP3M7NvW5GqXCAbBiVq/AG/ust0JaJLk5zVkHEUNtfq98N4lYXU1vVM5th6J319+WeEh7Fl4LI60iC+wihVpYrXEqcnZwT4jXqbcPnEtwHjv4A1eWtEyySBL8/D9uWCpvA6UuFU0ap8Yfm78/DrK9sN18bkVlYwY3vbadaV7/1e3Sw/KXebmgrhfVibAL4OldnOBMKhYJr+oVxTT/L89eXlqD09QXAvWdPoj77rFnnVvn5EbZwodl9JveK09mlDi+Q0/ONAtnB53m5IwtkSziAi8XWjK1U6avqpVfYncAYUQQ17VW44m8d28kpJFZEiFMtCOTIDkw3uVTobGxHfmgljH7YvnOxBTknhKC15Q+lkD6AJNJ4wge17FiDHpLnw77PxWpJwpLa94xPCIx6GP5YDOf22K0IUKc34GKmucLSDSdBgrX/uoogH9EIwlWlJNjHvqtqlzTqNeIHa/y99p5Ju2IoLkHpa1s7tp4htQJ5fGzjqLWtkSSpke+zv6drs9ykzuSU4uvhIjfdcXBkgWwJk4uFHQXyxrSNBHoEMjS0HSK0rWXON+IL3iuw46+tUAhLuFO/iQ58pqKq6nIoOgfBd3T8nJyd6DHCwWHjItEQxRSld1ZyT5h3OWkLpnSNnJMtE8i6KvjhH3D8RxjzuLAtbPjleeVDsOcTkZd8zy8dvgKy7ugFnvj+MCv/PpL+EbX2iSculrB6/3n+dlX3ettl2pm9y0QQInqsvWfSruhLS3APta2I7eTtRrCPG6ezO6ZQ75X1J3j/j9R6224Z1pXXZjb9GbEvrYDB3QLa35pVpk04wLq9g2JysbCTzVulrpKt57cyIXICqo6M0jaFT4h9xLGJmPFQngcXD9duO78HkGzXYvpyQqkUDg7BfeC7uyH/jL1n1HrKcsVrw1KBXmsJ7CHcVlralnvNw0IcT3kJJj5rXvy6+8C4f0P6dvHDr4M5kF5ISaWOf3yxl9zSqprtr6xLwdvdhQfHye+pDiNbLQqTh93j/F06m8BQUmrzCDKINItT2bVWb6eySrj5/e2oLxTb/FqbU7KJDfNl0Yy+LJrRlyl9O/O/AxmcM6ZPWKK4UsuJrBKGRXWy+ZxkbMul/S5sC3aOIP+V8RcVugomR062y/Udlphx4t7kZlGSBT8+IFpMXwrd7eyBuy/M+Vr8e9XtolOiM2Iq0Au2sVe1i5uI6rXE6q2iUOQXD/8HjJpnfezQu8T5Nz4n8pU7kPT8cjp5uZJXVs2DX+2nWmdg15k8fk/J5oFxPejk7dah87ms2fuZaCE9uJ2aHTkQ+pISVD6+Nj9vz1AfTmeXivSHci1//2Iv+9IKWLErzabXKaoQIvfaAeHcM7o794zuzgvX90epgE/+tB5k2J9WgCTBFdF2DDTJNAtZIFtCVyEsmOwQvTVIBj48/CFdvLtwRbjcnKAevp0htJ9oHqKrgm/vEDZzs7+u7cYn03ICY2Dm5yJK+tOD9p5N6zBFeNujmUtL7fBOrgeDFgbMbHqsyhVGPADZx0XjnA4kLa+cwd0CeOWWgezW5PP8z8dIWpdCmJ8H94zq3qFzuaSpLoM/l0DJRcv7D60SDUEa2l5eYkg6HVJ5OUo/2wvkXqG+FFfquFhcybyV+8korCAu3I/1x7IwGGz34/NAuhC58XWiwGH+HtwwOIJv9p4jv6xxR0ET+9IKUCkVbe4iKNP+yALZEtpKuzlYrNesR52vZt6Qebgq5ST+RvQYD+k7RSORc7vghnchfKC9Z+X89BgvcmWP/ySs9JyN3JPg6t0+bbND+oj0E53lL756qNeIgtKI+OaNNxWYnt/Tuvm1AkmSatrdXj84gn+OjWHFrnQOpBfy2OReeLo5UGqXMyNJ8OOD8PsLsHJOrUNSXY6uhqqiS744D8BQKlaoVL7tE0EGeGTlQf48lcsL1/fn/qtjyCmpYl96gc2uUyNyI+uL3H+MjaFSa2D5do3FY/dqCogL98XbXS4Bc3RkgWwJXaVd0iu0ei1v7X+LPp36kBBj42KjS4Ue40FfLZwXrpoP/W+294wuHfrfJO4tNWRxZHJSIKR3+xS6hcSCQde8HO2qUji9EeJmND+XNLSfaEqUsa9t82wBBeVaSqp0RBq9WJ+cGsuUvp0Z1C2Am4d2UHfOy4E/l4hc9L7XQ+Z+WPto/VSaM1uEp3zYAGEDeImjLxE5wonFlWMAACAASURBVMp2SLHoZRTIuzX53DEyijnDI5kQG4qbSsmvRyxE71vBHk0+fcP98HKrL3J7dfZlUlwoX+zQUF6ta3ScVm/g4LlC4qPk9ApnQBbIlrCTQP7u5HecLz3Po8MedQzvY0ckchS4+UKvKcIZQMZ21LXSczZyTto+/9iEqUNjc/KQT28Unx9x1zX//CoX6DLYNg1JmonJizXS6MWqUir46M54fnhglFnbN5lWcHI9bHoR+t8imh6Ne1r8sN/5vtivXgsrbhE1FLd9d1n4uBuMAlnVDikWIb7uhPi6M7x7IAtn9AXA18OVMb2CWX/sIpINcvxrRG60+SK7+6/uQUG5lm/3NF6FU18opkKrt3isjGMhx/gtoa3ocAeL0upSPjz8IcPDhjO6y+gOvbZT4eYFD+4An852yRG/pLFkpefoVBZBSWb75B+DUSArmpeHrF4DXsEQNapl1+gaD7s+EmkcLu1fHJeWVwZAVFD9ZgUqB2/T6zTknITV94n0r+veFu+tsU8IB57fnhH55rs/hIhhcNu39nUH6kD0JSLFoj0iyAqFgp/nXUWAlyuudX7kTe0fxu8p2Rw+X8SgNub+Hs8splJrsBgFjo8OZFhUJz7+8yxzR0bV+7G5RyPSPOQIsnPgJN9+dkBX1eFtppcfX05+ZT6PDXtM9kdsioBuHSIiLkvMWek5OrmnxH17CWQ3L/Gaa0ogaytF1DA2oeU/3iLiQV8FWUesj8s5AW/Hw5ZXa912WoHJjqpbJ7mbl83Ra+GbucKVYtaK2g6MJlvFkFjY9b74MXrnT5eNOAYwlAjLtfaweQNRLOfhWv+9N7lvZ1yUCtYda3uaxR5NPoDVKPD9V/cgo7CCNYcy623fl5ZPRIAnYf72668g03xkgWwJXYXICewgiqqKWH5sOddEX0P/4P4ddl0ZmUbEjBP3qZvsOYuWUeNgYWMP5LqExDadYnFmM1SXQt8WpFeY6Gos6DvfRB7yhkVQcBY2vwgfXAVn/6y3+5s96ST9mtLkcnJaXjmhvu5yMV57sO9z8Vq5/h3xw6ou7r5w+3cwNQnmrAK3y6t1tymCrPLz67BrBni5cWWPINYdbXuaxb60Arp28qSzn2WROzE2lL7hfry+4SRVOj0gimL3agrk9AonQhbIltBWdmiKxdmis1ToKriuRyu+WGVkbInJSs+ehXpn/oDtb9c27GmKnBMiWhcQ1X5zCu4tItUGveUxx9eAh3/rOqH5RYBPGGRYyUNO2w4nf4Xxz8Dt34sI8vLpwtHF+MX/44FMPtiSysdN+LGm5Zc3Sq+QsQFVpbDlZYgaDb2nmh/j3xVGPtDhq5SOgKGmSK99IsiWmNo/jLO5ZZzIKml6sAUkSWJvWkE9ezdzKJUKEqfFcr6gghU7hXXj+YIKskuqmjxWxnFoUiArFIp4hULxmEKheFWhULygUChuVSgUl/7/cAcX6ZVUizetv7vc1lXGATBZ6VVb7wrVLhgMogvdbwvgvSvh9O9NH5NzQnRSVLVjWUVIrPhcsORVrNfCiV+gz7WtS/9RKEQU2ZLVmySJltS+XWDE/dBrMjy0C4beKSKWeaLtbUG5sKJL+jWFLSdzLF7uXH453QJlgWxzdrwLZTkw+YXLouiupeiNKRbtYfNmjSl9w1AoaJObxbn8CnJKqohvRpOPMb2CGd0ziLc3naK4UlsnNePySadxdiwKZIVCcY9CodgPPAV4AieAbOAqYKNCoViuUCgiO2aadqCDBXKpViw7+bp27IeGjIxZYoxWeunbO/7aZzZBYRpcOU/k8X51E3x/L6QkQ8ov4nZqQ/3ocu6J9ss/NmE6v6U85LNbobKwZe4VDekaL6zkyvMb70tZK8Tz+Kdqc1pdPcXfCUSbYiC/rJoZg7rQu7Mv//p6P5rcskanqtTquVhcSVTg5bW83+6U5sD2t8RroGszPbAvMwwlpSi8vFC4dKxHQIivO1dEB7LuaOsFcnPyj00oFAoSp8ZRUK7l461n2JtWgK+7C707y9/xzoK1CLIXMFqSpJslSVosSdInkiS9I0nSw5IkDQOWAr06Zpp2QFvRoY1CTBFkH7eOXXaSkTFL1CiRsmAPu7e9nwkXiImL4IHtIp1AvRZW3Qar5ojbiltqo8vaCihIaz+LNxMhfQCF8LI1h3oNuPm0reW5qbFIQz9kvQ42Pi+e46Db6u8L6gWeneDcTiRJoqC8mogATz6+Mx6VUsF9X+ylpFJb75DzBRVIEkQG2acZ0iXL1lfE63HiQnvPxGHRlxSj6uD0ChMzBoZzIquEJb+daFUu8t60Anw9XOgd2jyRO6CrPzMGdeGTP8+y5UQOQ6I6yS4xToRFgSxJ0ruSJFlMAJQk6aAkSc1Y+3RSOtjFwiSQfd3kX5cyDoCbF0SOFLnAHUlRBpz4FYbMFWkKLu5w9ZPw2FH4x5ba2+yvQaEU0eUVMwGp/SPIHv6ikYN6beN9Br2IcPea0rbahS5DxPNqmGZx8CvIOwWTFjVOI1EqodsISN9FWbUerV4i0NuVboFevHv7UM7mlvH2ptP1DknPF1HlSDmCbDvyz8DeZSLlJfjSjR21FUNJabu0mW4Oc4ZHcmt8V97edJqFPx1rcfvpfWn5DI3shLIFIvfxKb3R6g1kFFbI+cdORpNrHAqF4hXgRaACWAcMBB6TJOmrdp6bfelgF4uS6hJcFC54qGT7FxkHIWY8/P48lGSJwr2O4MCXIOlh2N31t/uEipuJLoOhx0T4603RqQza18HCRN/rYF2iyPcN6lG7PX2HyDttjXtFXdx9ILRv/YYhJVmw6SUhgvtca/64biPg5DqKcoStVICXyIEe1SOYUT2C2JySzdPXxtVON69+kxAZIPMg/PJE67sZSgax6jgu0bbzusQwlJagagcP5ObgolLy8s0DCfBy46OtZyiq0PLazEG4uTTtV1BUruVkVinXDerSomtGBXlz+4hIlu9IkwWyk9GcJKApkiQ9qVAobgQ0wE3AVuDSFsgd7GJRqi3Fx81H9j+WcRx6GAXymT9g0Kz2v55eB/u/ECkKgd2bHu/qAeP+DQNugXO7ITSu6WPaStwMIZCP/wRj5tduP75G1Cz0nNz2a0QME+eXJJEH/u0dUFUCCUssF30ZWxRXa3YC3gR61RYJjukVzOJfUrhYVFnjv5qWX46Xm4pgH9lLnMpi2LxYNO3wCoZR80Dp2rpz9RgPvmG2nd8lhr64BFUn+wlFhULB09fG0cnLjZfXpaAzGHjv9mFWj9EbJD7frgFgWCuafDx+TR96dfZlZExQa6YsYyeaI5BNnxQJwHeSJBX9P3vnHd5kuf7xz5M0Xemmu6UUWmbLBpmigDJEQFTAhdvjET0eFfdRQ47j5xZx74kCCo6DsgUEURRklVnaQgvdO+nKen9/vG2h0JGWJul4P9eVq83zrjvQJN/3fu7ne3d4ESdJsmG/k10slPIKhTZF+EDwCoKkbyHhCseXHCWvg9JTMPWF5h3XJa5uNteR+EfLAvbQj6cFss0Gh/4nZ7Q9WqG2Mno4/P0ZFByTre4ydsDVn0B4/4aPiRwManfUJ3cAEwjUnha+Y+NDgMNsO5bP1UOjAdnBIibIW7khz/hLvgExZMPw22DCk+B1fp3WFBrHZjDgHuP69f13XRyH1Wbj5XVH2Zacz9iewfXul3SqhP98n8TejGIu6hXC0BZkgX09Ndww0oEWlAoOwR4f5P8JIQ4DQ4GNQogQoNKxYbkYS/XLc7JA9tEoC/QU2hAqFVxwhyxc3xnt+HrknR+Db0TD3rFthb4zIHP3abu3U7vkNtfnW15RQ437wU8PyEJ57AOQeGXjx2g8IWIQ2ly5NCPoDIHcJ9yXYB93tiWftnw7UVDu2vKKylK5NGbTc6cfB753bgymMlhxG6g1cPtGOUOviGOHYzUaUTnZ4q0h7hjXg6gAL55fc+icemSL1cbTqw4y481tnCqq4PVrBvHpLcPtKsdQ6BjYk0HWAS8CJZIkWYUQ5UDH7mbhAoFsNBuVDLJC22P849D1AvjpQfh8JvSfA70mt/51zBVwbAOMe0gWLG2ZfjNgg07OGo+6W84mqzStJ+yDe4G7r2wb13MSTHjCvuNiRhLw+zt4YCLQ+/S/oUolGBMfzLZj+bUiIL2wnIt7h7ROvC3h6FrY+N+6Yyo36D7OeW2Xf3lWthO8+WeIbnyKXaH1sJWWonZQm+nm4uGm5sHJvbh/2V5W7c+qU1/8/OrDfLQtjetGxPDIlD74e7XxzyWFVscegfy7JElDap5IklQmhNgKDGnkmPaNuVogO7EG2WAy0M1PmYJRaIPEXwLzf4etr8K212D/csdcR+0hOwC0dYJ6QFh/ue545HxZIPe4qPWyjyo1xI6FwhS46kP5uT3EjES9fTEDVan4edb9Mh8bH8wPezI5nG2gi487VRabazPI5fnyz4fTZEF8chd8OAGOroFB1zV+LEBZPmjrnxK3i5M7Ycc7MOw2iB3T8vMoNAtbVRWS2YzK13ltppti5sAo3v81jZfXHmFKQjjubipW7DrJh9vSuGlUN/QzE10dooKLaFAgCyHCgSjASwgxGKgpVvND9kjuuFiq3e2c7GKhlFgotFk0XjDhP3IHt/ICx1zD0995bhnnS78ZclnAsQ1QdFwug2hNZn8KSM3zYu86AoCxHil1bagkiQt7ytnibcfyGNRVrqGM6eJCi7fyAtnOzrP6piJqCPhFyzcdTQnktK3w2XS44xf5uOZiMcEP98jlPJcsbP7xCi2mts10G8kggzzD8siU3tz8yV98/Wc6g7oG8Nh3+xnZI4gnLu/n6vAUXEhjGeTJwM1ANPDqGeMG4HEHxuR6LFXyTyf6ICslFgrtAm0X+dHZ6TsDNj0Lq+6XhV6faa17/pbMXmmDydFEM0xKPj1mzIVPphI+5CZ6hg5ka3I+QVr5c821GeQCeQGoqrqeUwjZIWTnx7Jjh0cjn4XHtwESJK1omUDe9irkHYLrloNn28lkdgaspbJAdnab6aa4qFcIo3p0YfHGZDRqFSE+Hrx13RA0aqXeuDPTWKOQzyRJGg/cLEnS+DMeMyRJWunEGJ1PTQtbJ3XSs9qslJnLFIFsJ4ZKM7d/9hff7jp53udKzTMy76MdHMs1tEJkCp2GkN5yB7uSDOg25vym+1uRg5p+JFoPy84aFhMsv1F2w0j6lrE9g/kzrZDkXAMqAVEBLuyiV14A3mfdaPWbIbsHHV3b+LGZu+Wfh36UHYeaQ+Ye+PVlx9XSKzSKzViTQW5b33VCCB6d2oeCMhPFFSbev3EoXXyclyBTaJvYc3u0SghxnRDicSHEUzUPh0fmSpy8SM9oNgIoJRZ2YLNJ3L9sLxsO5fLoin38kdry6X5DpZk7Pt/J1uR83t2S2opRKnR4hDjtWtFvpmtjOYO/pT74SaVy1701j8gNTLqOgKx9TIhRUWWx8cPuTCL8vVy7Gr+88NzFeF1HgDZUFr4NIUmQtQc8/GQXkay99l/TmAdLrwefMJjyfMviVjgv2moGGWBg1wCenZXIxzcNJyHS39XhKLQB7PmE/AGYCViAsjMeHRcXCWQlg9w0izYcZcOhHB6a3JuYLt7MX/I3J4vKm30em03ivqV7OFFQzrBugfxvbyYl5WYHRKzQYRlyk9zZLvEqV0dSy+/mePmXnxbI5Qpj/g2TngUkhtuS0KgF2aWVdOvi4mUk5YXnZpBVauh7OSSvPz2LdzaGLDDmwMi7QKgbF9NnUpNNL8+Ha5YoZUIuojaD7KJOek1x/YhujI5vG7NBCq7HHoEcLUnSXEmSXpQk6ZWah8MjcyVOdrEwmOQPDUUgN87q/Vks/uUYs4dGM//iOD64cRhmi41/fL6LCpO1Wed6df1RNh7ORTe9HwtnJFBlsbFy9/mXbCh0IgK7wbVfO8+WrAkkSWJvRTDlbgFwfKvsPjJRJzcR8fDHM30Lg2PkBXquF8gF9f+79Z0B5nI4trH+42rKK+Ivkd0nDtpZZrHmUUjfDjPfktuUK7gEa/UiPbWf8l2n0PaxRyBvF0I00sKpA+JkF4sagezjrpRYNMTh7FIWfLOXwTEBPDMrESEEcSE+LL52MIeyS3no271IdtYj/rw/izc3HeOa4V25YWQ3EqP8Gdg1gCU70u0+h4JCW8NYZcFshVNdRsn10TUWcWo36H4hpG7mwjg5c9rVlQv0JKn+GmSQ7e28AhvODGfuljPHYYmymC5IhrzDdfepLJE75NU8ti2CnR/B6HvltuQKLsNW2jZrkBUU6sMegTwW2CWEOCKE2CeE2C+E2OfowFyKk10sjCalxKIxispM3PH5Tnw83Hj3hqF4uJ32hR3fJ5SHJvdm1b4sftqf1eS5NhzM4f5lexjaLRD9zITaVrvXj4jhWK6RP9MKHfY6FBQcSVGZXCK0d+j/wV2/yUKzhrgJUJLB5Ai5Oq53mAs/a0xGsJllF4uzUWug9zQ4skYuizibzN0Q2hfcvWXXC4ScRa7BmAfvjIGPLjn92KCTM86XLHTQC1KwF6vRACoVKu+O7RSr0DGwRyBPBXoCk4DpwOXVPzsuTnaxMJirSyw0ikA+G4vVxj1f/01OSRXvzRtKmN+5ZS93joujR7CWd7ekNJoBXrHrJHd+uYs+4b58cOOwOkJ7+oBIfD3d+OrPdIe8DgUFR1NYLgvKQF/vc2/u48YD0KtsJ+vvH8eEPqHODu80NT7a9WWQQRa+VSWQtqXuuCTJLhQ1JRK+4fLCvppsc02dcVkeXPkhXL9Cfsz7Hq75yv6GKwoOw2YwovLxQagU+zSFtk+Tf6WSJJ0AugITqn8vt+e4dk3tIj3nZJCVEouGee7nw/x2rIBnZyXW1k+ejVoluGNcD5JOlbI9pX5Xi4+2pbHgm72M7BHEkjtGEqR1r7Pdy13NVUOiWb0/mwJjVau/DgUFR1NUI5DP+tsG5O5/Ad0gZRM9w3xrZ05cQlMCOW683Gr7wPd1x0tOyovsIgefHus3A3KSoCClbp3xgNnQ8xL5ETfeqZ72Cg1jM5Si9lG+5xTaB00KXSGEDngEeKx6SAN86cigXE6tQHZOBrm2xELJINfh210n+fi3NG4ZE8vsYV0b3XfW4ChCfD14d0vKOdve2nSMp1cdZEpCOB/fPBwfj/r741w3IgaT1dYq/soKCs6mqKxaIHvXI5BBForHt4LV4sSo6qG8uoypIYHs5gEJM+HAd1BZenq8ZoHemQK5b/Vk5nd3KnXG7QCrwYjKT2nOotA+sCcTPAuYQbW1myRJmUDHVnJm52eQPdWeaNQap1yvPZB0qoTHv9vP6Lgu/Oeyvk3u76lRc8uYWLYm55N0qqR2fPX+LF5ae4QrBkXy5nWD65RVnE2vMF8uiA3i6z/TsdmUxXoK7YvCaoEc1JBA7jEeqkrh1C67z1ny448YNm1qjfBOUyuQG3H/GHormMtg//LTY5m7QaWRF+jVEBAjC+aTfyl1xu0Am8GgZJAV2g32CGSTJBd2SgBCCK1jQ2oDWCplD2QnTUMazUalvOIsfthzCoC3rhuCm53tPq8f0Q0fDzfe+1Vu+nGm88ULVw+w6zzXjYjheEF5g6UaCgptlaJyE2qVwNez/hkSuo8DBKT8Ytf5Kg8dIvORRzl513wy7pqP+dSp1gm0tsSiEYEcNQTCB8BfH5+2catZoHd24mL0v6D7RaddOxTaLFaDQXGwUGg32KM8lgsh3gMChBB3ABuADxwbloupEchOwmAyKA4WZ5FVUklUgFf99ZQN4O+l4foRMfy0L5N9J4sbdL5ojCmJ4QR6a1iy40RLQ1dQcAlF5WYCvDSoVA3c2HsHydnWVPsywrmvvobKz4+Q+/5N2R9/kHL5dAo+/BDJ2jzP8XMoL5Ct2jwa6VYmBAy7FXIPyNlhSZIF8pnlFTUkXgU3/VjXtUOhTWIzGBQPZIV2gz2L9F4GvgVWAL2BpyRJesPRgbkUc4XTHCygWiAr9cd1yCmtJMyv+SUut4zpjlolmP3u7406XzSEp0bN7GFdWX8wh9zSymZfvy0gSRIWq83VYSg4maIyU9M3lHET4ORO2Su4Ecr++IOyrVsJvvNOgv/5T+J+WoV21ChyX36F0p9Xn1+gNU1CmnIy6H81uPvAzk+g+ARUFtcvkBXaDVaDoc120VNQOBt7Ful1B7ZKkvSQJEkPAtuEELGODsylWKqcuurZaDYqGeSzyCqpJMK/+Tcp4f6ezBocRZXFxjONOF80xrUXxGCxSSzfmdHsY9sCb29O4eKXNyt11J2MwjJTw/XHNcSNB8naaJmFZLOR+9LLuEVGEHj9dQBoIiOJfvMNVFotFbv/Pr9AKwrr90A+Gw9fGDAHDqw8Ha8ikNstkiRhMxpR+SrlhArtA3tKLL4BzkxHWavHOi6WCqc5WICcQVZqkE9js0nkllYR7t+yMhfd9AS+vmMkc5pwvmiI7sFaxsR34es/M7C2M5EpSRLf7MzgZFEFyblGV4ej4ESKyk0EaptY6BszCvyi4e/PG9zFsHYtlQcOEHLvvag8TicKhEqFZ0ICFUkHzi/Q8sKGHSzOZtitcsnbpudA7Q6h/c7v2gouw1ZWDjYbal/FxUKhfWCPQHaTJKm2pVH17/YXhrZHzJWgcW4Nso9GEcg1FJabMFlthDejNOJMtB5ujIqz8wu4Aa4f0Y1TxRX8ejTvvM7jbA5nGzheUA7AzhNKV8DORFG5uWGLtxpUahhyo5yRLUw9Z7NkNpP72iI8evXCf/q5/aA8ExOpOnwYyVRPlzt7qSmxsIfw/hA9XG7+EZYIbh37q6cjYzPIln1KBlmhvWCPQM4TQsyoeSKEmAnkOy6kNoCTF+kZzUb83JW76hqyS+Ta35ZmkFuDS/uFEeLrUWexnq28nIIPP6T8790ui6spVidloxLg5+nGzuNFrg5HwUlIkmRfDTLAkHnyIrldn56zqWjpMszp6YQueAChPndhq1diApLJRNWxYy0PtrzA/gwywNBb5J9KeUW7xmqQG2KpFRcLhXaCPQL5n8DjQoh0IUQ6ctOQOx0blotxokA2WU1UWauUEoszqBXILcwgtwYatYo5w6L55XAumcUVGDZtIvXy6eS+/AqZDz2E7XwyaA5kTVIWw2ODGB0XrGSQOxGGKgsWm9R0DTKAXyT0ngq7l8jrLaqp2J9E7ksvoR0zBu24cfUe6pkoexBXJCW1LFBJqi6xsDODDJAwS7Zx6zezZddUaBPYjHLJl0opsVBoJ9jjYpEiSdJIoB/QT5Kk0ZIknUf6oB1gdp5Arm0zrZRY1JJV7R4R4cIMMsA1w2MIrCjhyD/mc/Ku+ai03oQ88ADmU6coXrrUpbHVR0qekaM5RqYmhjMsNpCMwop268Sh0Dxqu+jZa4s47Fa5bfOh/wFgycvj5L/+hVtwMJEvvdhgK2pN166o/PyoPHCwZYFWGcBmbl4G2d1btnHrcVHLrqnQJrCWyiUWaqXEQqGd0KBAFkLcJIS4vea5JElGSZKMQojbhBA3Oic8F2FxXg2y0VzdZlpxsaglu6QCN5Wgi4/znETqo2uQN88eWkHAgV3sv+wGQr5eTpc7bsd71Ejy336ndsqwrbAmKRuAKYkRDO0mu3fsPKGUWXQGisrNAAR629mNs8d4CIyFnZ8gmUyc/Pd9WIuLiX7rTdyCGs7uCiHwTOhHZUszyLVNQs5vjYBC+8NmqMkgK991Cu2DxjLIdwOfAAghPhBC1Ng6fA7c6+jAXIql0mkuFjUZZEUgnya7pIpQXw/UDTU8cBJVqal0O3GQQ5dczcPug5j0xnbWHsghdMECrMXFFHz0kUvjO5vVSVkMjgkg3N+ThEh/PDUq/jqulFl0BpqdQVapYOjNSMe3kf2fB6n4+28in3sWz75Nt3X3Skyk8ujRlpUZ1baZVgRyZ8NmVGqQFdoXDfQkBcCT6vbSwDBgMzCiesy1qT1HY65wmg+yUmJxLtmlFS5doFdD8bLl4ObGnCfn07tMzX++288/v9yFRi14MHowIz74mOnpERR5+eFtruD6A6sZmbmfb/pcytruI5HEufef142IQTe93zlT2Kv3Z/Hq+qN8dNNwYrp4NzvWjMJykk6V8vhlfQBwd1MxMDqAXUoGudWwVVWROmMGlswsV4dyDqES/GizoflJxeFmHCdZI8C2ni7/+Ad+l11m1zGeCYlgNlN15Che/RObF2hFtUC2xwdZoUNhLZW/65QMskJ7oTGB/B3wnRDiOeRMs4cQYgTwn+ptHRdLldM66SklFueSVVJJ33DXLuSwVVZS8v33+F56CW7BwQwNhlX/Gss3u06SXliOqe8daJ77FwuLtpMfMoDE7z7Cw1CMIbwrd+3+lrmF+9g355+URnWvPWd6YTmfbj9OTJA3t449PX4gs4T7l++h0mzj5XVHWHxt3dX6kiTx7E+HsNgk7r+kF/71TKPXlFdMTYyoHRsWG8i7W1IpN1nwdm/sra5gD6bUVMwn0vGdPBn3mBhXh1OHvSeL+e1YAbeN7Y6Hmz1rr6s5/BNupjQCb7/e7kNqFupVHkhqvkCuLbFQBHJnw2Y0IDQahEfHzq8pdBwa/NaUJEknhLgFeAFIQM4cvwB8LknSx06KzzVYKpy+SE8RyDKSJJFdUsnFvUJdGodh7VqsJSUEzp1bO+amVnHtBTXCqA/ZadegWrKE2N/X4dmvH+H69/BMTKT0f/9D/fwLXPzqQ3S57TZC7vs3QqXCZpNbQD/78yF6h/syJj6YAmMV//h8F4He7lzcO5Sv/0znH+N6kBjlX3vdn/dn8+G2NABW7cvkiWn9mDkosk4WenVSFgmRfnQNOp19HhYbhHVTCnsyihkdF+zYf7BOQFWK7BscfPd8PHv1cnE0ddmz9jBfbElF9/DUBhfY1UvWJfDhJfDdbXDDd6Bu+kZKExWJOiCAiqQkmt2nUqlB7rRYDQZUvr7N+/tUUHAhjaYaJEn6RJKki5E72XoKkgAAIABJREFU530jSdLFHV4cWy1gsygC2UUYqiyUm6wud7AoWroM99hYvEeMaHCf4Pl34T1qJGGPP07sN8vx6t8fIQT+M2YQt/pn/K+YScH775P58CNIZjMqleCVOYOIC9Fy91d/k5Jn5O6v/ibfWMV784by2GV9CPTW8MKa05PkRWUmdD8mkRjlx4/3jCEq0Jv7lu3h+g93sHhjMos3JvPq+qP8nV7M1MTwOvENiQlECJzmh2zOyaFk1U9OuZYrqEo5BioV7rGxrg7lHArLzAR6a5ovPiIGwPRFkPYrrHvCrkOEEHgmJrbMyaK8QPZg9vRvel+FDoWt1KA0CVFoVzSYLhBC+EiSZASQJOnapvbpMFiqbbGc5GJhMBkQCLQarVOu19ZpC01CKo8cpWL3bkIfeaRRweHWpQvdPvmk3m1qf38in30W99hY8l55FauhlOhFi/Dx8uKDG4cx483fmLZ4K5VmG6/NHciA6AAA7pnQk6dXHWRrch4X9gzh6Z8OUlxu5vNbR9Av0o+Vd43m6z/TeXndEbanFNRez9tdzfSBkXVi8PfS0CvU1ylOFlZjGRm3305V8jG8hw1FEx7e9EHtDFNKKu4xMajc2143t6IyU9Nd9Bpi0HWQtQ92vAPhiTD4hiYP8UxIoOCjj7BVVqLybMZ7tcYDWckidjqsRoPSZlqhXdHYfNoPQog9wA/ALkmSygCEED2A8cAc4APgW4dH6UxqBLKTXCyMZiNajRZVPQu6OiNtQSAXL1uGcHfH/4rzb0wQfMcdqP38yV64kPTb7yD8yScIV6t5Z0wAT3yfxKwhUVzmU0FVcjIAc4JtrJGK+GTJLzAmlp2bk3hoRAxxZTlUJecAMLsLXDU3tnYFLYAAVIWZVJ1lWjHBy8jmfamUHwloHVcQIXCPjUW4nf7okGw2sh57lKpk2R69Yu++DimQq1JTcI+Lc3UY9VJYbmcXvYaY9AzkHoBV94N3MAR2O70tqMc5i5Y9ExPAYqHqyBG8Bg60/zrN7aKn0CSSyYTpxImmd3QCmshIVNr6kz1KBlmhvdFYDfJEIcRlyF3zxgghggAzcAT4CbhJkqRs54TpRGoFsvNcLJTyitO4uouerbyckh9/xHfKZNwCm11hWS+Bc+eg9vfj1EMPk3bFLHkMeAtgA6S+WHf//9b8shTeA/gFUlt47RnVjxNrWniCevDoGU+4Tof3sGEA5L/zDob1GwhZ8AD5i9+gYt9e/CZPar0LtgEksxnT8RP4Tpjo6lDqpbjcRPfg85iFUrvB7M/g/Yvh67l1twV0g2mvQM9La4e8zuio1zyBXKgI5GokSWqVetzs556jeOmyVojo/FEHBRH26CP4TZ9+zmuzGg14hIS4KDIFhebT6IoMSZJ+Bn52UixtA3NNiYXzfJCVNtOnyaoWyGEuEsilP/+MzWgk8JprWvW8flOm4BEXR1VKSpP7SjaJ/1tzmFPFFSy4tBc9Qlr+91FgrOLJHw5wzfCujOt1/l9O1tJSCt59jxM3zMP/yivxHjaM/DfexH/mTLrcfjuGDRuo2Lu3yfOYs7I4PmcuUYtfx3vw4Cb3dzWmjAywWPCI6+HqUOqlsMzM0G7nWfrhHQS3b4QT206Pmcrht0Ww5Gq51fOU58EvErfwcNRdulCZdKB51ygvgOD484uzA1D09dfkv/seUS+/hPfw4S0+jyRJGDdtxnv4cAKvv64VI2xBLGYLRV9+SebDj1C8YiXhuqfw6HH6/WIzGFH5KckghfZDp/N+MpZVsOi/z+NZmE5Q9ZSkEILeo8cxfMZV/HRiDV9EhmM69A6kfAFAjF8ML4570SF1wkazEV+N8qFRQ3ZpJcE+7rg3x6qqFSlaugyPnvF4OUC0efTsiUfPnnbte/fIi0jJMzKo9/m5efhKEkePaFndJYjLpww5r3PV4H/55eS/8w4Fn3xKycqVePbvT/h/9Qgh8BowkOJvv0WyWOqUYZyNYdMmLHl5lKxc2S4EctUxuXzEPa7tiTtJkigqP48a5DPxCYGEWXXH+s+G7Yvh15fg2C9w62pEeH88ExOoPNBMgVxR2Ok9kMt+/53sZ54FlYr02+8g6rXX8J0wvkXnMqWmYsnJIXj+fPymTGnlSJuP37TLKP7mW3JfeYXUmVcQ+czT+M+US9WsBgNqH+W7TqH90GEEshBiCvA6oAY+lCTp+bP3KSgqYfFjj+NXdIIU7+54+gUR20VLpdHA799+xeZ1S9ncJ4tAX4k4bTT4RmCVrGxM38hjWx9j0fhFrV4rbDQZCfV2raVZWyK7xHVNQiqSDlCZlETYE0+43Iqoa5B3Hcu2liKE4PIBkXy6PY1juUbiQ89/tkLl7U3oggX4z5hB0Tff0OW221BVe5t6DRhA0RdfUJWc3GhXtrLt2wEwbNhIuE7XqJhuC5hS5SIXjx7dm9iz9bFYbSzakMzEvqEMjjm37Ke00oLVJtXe8Lc6bu4w7kFZOL85DA6tgvD+eCUkkr91Gxl332PniSQ4YoE/D8Jae49pX/hcfBGBs2c3uN108iSn7rsfjx7diX7nHU7ddz8n//UvIp97tlZINoey3+T3kXbM6BbH3JoIlYrAuXPwnTiBUw8sIOuJJ3Hv1g3PxESk8nKlSYhCu6JtfyvZiRBCjVzSeSlwEvhLCPGjJEm1PkRms4U3HlyAjzGHkMtv4YA1hkVH8/hy2nB2Hn2MDR65jDwQxOQ/w+jjJ5j00K1oesl39V8e/JIX/nqBd/e+y/xB81s19lJTKT0C2ua0rSvILq0iKsA1Arl42TKElxf+M2e45PqO4u7xcSzfmcFLaw/z3rxhrXZej549CX/88TpjXoPketSKvXsbFMiSxUL5HztwCw/Hkp1N+c5daEc2bKfXFqg6liIvQPI+/5uW5vL86sN8uC2Nn/dnse7+cbip696kF5fLLZ8DWiOD3Bhd4iC4N2TuBsB30qUYt27FfOqUfcfbrGBUgagEk53HtCOspSUYN23Ce8gQPOpZzGkrK+Pk/LuRJInoN9/EPTqamE8/5eQ995D5yKPYyssJvLZew6gGKdu+HU1MDO7R0a31MloFt+Bgohe/TtrsOZz81710/ehDANRKiYVCO6JJgSyEeAX4WJKkZs6lOZULgGOSJKUCCCGWAjOBWoFckHkSD/Ug/OLG4p9r5FrP/USUZ7H5rc/I8zAw2RxAf20VmR5e7Lf1pfTrLcR2lZszxAF3ZF9IyqFVfPtrIVE+kfWE0DIGp3gS7VvG78kd2166PvKNJvy9NWjOcFdISD5JTJCW3z/e77gLC4FH796oz1htbausJHvfXrwun0ZVakuXxLVdbu4Nqw8c4IeNVcQGO67mXZIkchISyNmfRGDf+muRq06coCA4mIDZsyn+/nvy1q7F38v1rcUbI7eoEHX/RMrsqK9uTXYeL2TTn+lcEqolrSCfD3/YzKi4uovcThSUEafOx5ybyt69BQ2cqZXwGgXpB2DPHtmq7Yn/2H+sMRfWPwlD5kG3kY6L0UVYjUZyX3yJrLffpsuNN9bZJkkSRUu+otJiJuihBzlUXAzFxQDY7rmbIj9fjn/1NeHdu6Pysm/9i2S1kp2VidfoUU7/u7QX84MLyHv7bdL0/8UaG0ux2YK3E2KNj49H24CbhoKCvQhJkhrfQYjbgVuQxfQnwNeSJJU4ITa7EUJcDUyRJOn26ufzgBGSJN1zxj6Nv1AFBQUFBQUFhbbBCUmSYl0dRGemyQyyJEkfAh8KIXojC+V9QojfgA8kSdrk6ABbi4gIf0bdO4JLvKO4sO98Nq/KpkSVRUb45xzPnovWy4+bR8fSL9SblYv/D6/eI5h95bQ65yiuKka/XY+Phy/6UQvPux65ylLFXRvvYnbv2UyNnXpe52pv7Mko5vnVhwn28eDN6+RFWjmllfx76R7uujiei3o5rjVyVUoKOU8/g3bsWMKflLuHZfzjToSbG9Fvv+Xy+mNH8cOeU7y87ijPz+rPmJ6O+/ctXLKEwk8+pft3K1HXU3N48r77kUwmur79FoaNG8n5v+eJen0RXgkJDovpfDBlZZE+70ZCHrgf/8suO+/zZRSW89qGo/x1vIhnr0is112kwFjFHZ/vQq2C9+cNI1Drzv5Txcxfsps7xnbnxtGxtfuu3p/Fc6sP8/XtI4huhbr1RsncC9/cCNNeg/gJzTs2bSv8eA/M+RIi+jsmPhdjq6jgxM03o4mIJOq1VxFCYNz+O9lPPYXPJRMJa6T5UMb8u5FMVXT94AO7PoMKPv2Uoq++pvuKb+t9n7UlCj79jKIvvyR68et49uvn0Gvl5OSwfPlyevXqxdy5c9vt57kQIt/VMXR27KpBrq7x7VP9yAf2Ag8IIe6UJKl1/bBaximg6xnPo6vHaomIiCOxm423TX+Rk/846TFdGJp8B/19nqPXwwOJDvLGx0P+57BYJQwWK2FnfWGHATcGPcBDWx7iL680ZsSdX61qTlkO6XvK8Y6PIax32xQHjuJA5lHSvIpJs0KufzT9o/1JSy0gzSubqP4JhMU7TsCRkIA2v4DcF1/E1rsX3iNG4J6URLheT2BQx11hf/04fz7flc/r2zKZOiy+dRqH1INm8GBMb76FZ0YGPmPG1NlmNRpx27mTLrfdRmBgIH6TJ1Om/y/q37YTOHasQ+I5Xwx79+JTVkZo3354n4c3dpXFyrubU3lr8zE81Cp8fP15fWsm04bF16krttkk5n+zg6xKFSvuGk2PSLkt87jAQEb3LeCDP3OZd3ECQVp3ThaV8+PhEsrwoFtUKH6emvN+vY2ivQCEEQyHIPCq5h17ogwogfBoaCWP8TZHYCCqW28je+FCNLt34x4bS+5TTxEcG0s3vb7RroPiqivJeuJJPNPS8B46tMlLFf/xByE9ehAcE9Oar8AhBNz3b6omT8Kjb1+HC9bAwEAmT57MmjVr2LJlCxdffLFDr6fQcWkyBSqEeA25OchlwHOSJA2VJOkFSZKmA23Fn+kvoKcQorsQwh24BvjxzB2EECycu5ZbtPGsMGWxu8t+oocXk7HfTOWB4lpxDGBy98FUWlzvhSZ1m0RClwTe3P0mVdaqOtsOFRziljW3kFpiXw2rwWQAwM+987Xf3JNRTFSAF2qVYHVSFuDcLnpBt9yM34zp5C16neyFelRaLX7TpjV9YDtGo1bx0OTeJOca+d/eTIddx6u/nB2s3LfvnG3lf/4JViva0fKqe7WvL9rRozCsW0dT5V6uwpRS7WBxHh7IGYXlTFu8jdc2HGVyQjgbF1zE01ckkppfxvKdJ+vsu/SvDH5PLUA3PYGEanFcw8NTelNusrBow1He/zWFS1/9lb0ZJehnJDheHAO4e0No39qFes2ivLo+uoM3Cgm4+ipZGL/8Cifn343w9CT6zTeabMntd9llqHx8KLKj6Ye1pITK/Ultxr2iKYQQePbr57Rs7gUXXMCgQYPYsmULhw4dcso1FToe9tQI7AMGSpJ0pyRJf5617QIHxNRsJEmyAPcAa4FDwPL6FhUKlYoHrv6O/0ZP5ZVeNzLj1lnEDQ5h+4pjHNyWWfsFbfPyw2asv8xaJVTcP/R+ssqyWHp4ae14QUUB/970b3bm7OT9fe/Xe+ySHSf48o/TLUGNZiNAp2sUYrNJ7M0o5sKewYzsEcSapGwkSSK71Hld9IQQRPz3v3gmJlJ15Ah+M6aj9un4izqmJIbj5+nGX8cLm965haj9/HCPi6Niz7mLccp+247w8sJryOl7a79JkzCfOkXlwYPn7N8WqEpJQR0SjNrfv+md6+FojoGr391OnqGKT28ZzhvXDibUz5NL+oYyrFsgr204SrnJAkBWSQX/9/MhRvXowjXDu55zrvhQX+YM68rnv5/guZ8PMyY+mPUPjOPGUbHn8xKbR+QgWSA394amohBUbuDRsRMCws2NkAfux5SWhikzk+jFr6OJiGjyOJW3N/4zZmBYuxZLUVGj+5bt2AE2W+2NpkJdhBBMmzaNqKgovvvuOwoLHfd5p9BxsUcgfwbMEkI8BSCEiBFCXADQlhbrSZL0syRJvSRJipMk6dnG9p018UUmjH4YIQQTbupLRHwAm748zPev7qYwswy1jz/qSkODx4+IGMGYqDG8v+99Sk2lmG1mFmxZQGFlIeOix7EmbQ2njHVtjNYkZfGf75L44vfTArkmg9zZWk2nFZRRUmFmcEwAUxIjSM0v42iOkeySSnw93dB6OMd9UOXpSfQbi/GbPp0ut93mlGu6GiEEPcN8Sc41OvQ6XgMGULFv3zlZ4bLt2/EeNgyV+2lLMp8JE0CtxrBuvUNjaimmlBQ8epxr22UPu9OLmPPe70gSLL9zFBef0fhFCMFjl/Uhz1DFx9vSkCSJJ79Pwmyz8fxV/RvMtj0wqRdTE8N5f95QPrxpGNGBTraeixwsZ4NLMpp3XHmB3CSkndaENgffSy8l8MZ5RL34gl3lEjUEzJ2LZDJR8t33tWOWwkLy33mHyqNHa8fKtm9H5e3dvDbfnQw3NzfmzJmDxWJh9+4WzHgodHrsEchvAaOAGoNGQ/VYh8Dd040r7h/M+Hl9KMg0suyZP9FatHiYjdhstgaPu3/I/RhMBj7e/zEv/PkCu3J2sXD0Qp4c+SQCwRcHv6jd90i2gQeWy9m0kgpz7XitQO5knfT2pMvlK4O6BjI5IQwhYHVSFlklFU7JHp+JJiKCqJdebHM+oo4kPsSHFEcL5IEDsBYVYT55unzAnJmJKS3tnGlht8BAvIcPb5NlFpIkUZWS0qLyiu3H8rn+wx34e2lYcddoeoef+z4f2i2ISf3CeHdLKl/8cYINh3J5cFJvunVpeDYj1NeTd24YyqSE8GbH1CpEVmf/m1tmUV7Q4csrahBCEP744/hNbd7ia8/evfAaMoTiZcuQrFaKvvmGlKmXkff6YtKuvIrcl1/GVl5O2fbf8R4xAqFxQllNO8bPz4/u3btz6NChNvfZotD2sUcgj5Ak6W6gEkCSpCLAwY70zkWoBP3GRHL9wpHEDQnBrdgdN8lKXn7D01y9g3ozrcc0Pj3wKcuOLOPmhJu5vMflhGvDuazHZaxMXklxZTHF5Sbu+HwnWg83ZgyMrCOQO2uJxZ6MYrTuauJDfQj19WRYt0DWJGWTXVrlsi56nYmeYT4UlJkoLDM57BpeAwYAULH3dB1yTfe8+qaF/aZMxpSWRmVS27Jbt+TmYTMaca+n8UNjSJLEIyv3EeHvyTf/HNVoV8SauuKnfjjAwK4B3DLG+d36mkVoglwqkbmneceVF3YagXw+BF4zF9OJE6ROn0H2k0/h2bMn3b5agv8VMyn48CNSpkzFnJ6ulFfYSd++fSkoKCAvL8/VoSi0M+wRyOZqFwsJQAgRAjScWm3HePm6M/zy7giVnL1JP5nT6P73DL4HN5UboyNHc9+Q+2rHb0m4hQpLBUsOfcU9X+0mu6SSd28YSq8wHyrMVqosVqDzlljszihiYNeAWheFKYkRHM42cDirlAhFIDucuOp208ccmEX26NUL4elJ+V9/YSksxFJYiHHLr7iFhODRs+c5+/tNm4bw8qJ4edMLlJyJKeUYQL2d0RrjQGYpGYUV/GNcD0J9G/+bjg/1Ze7wGNzVKl64qr/D3EVaDY0nhPZrQQa5ELw7qHtFK+I7eTLqLl2wFhUR8X//R8wXn+M9ZAiRzzxDtyVfovb3A5UKnwvbputLW6NPnz4AHGyjaxwU2i72COTFwHdAqBDiWWAb8JxDo3IhWn8PhEoWENnZjQvkKJ8oVs1axZsT30StUteOxwfGc1H0RXx2YAnbUjJ5+ooEhnYLxL+6FWxNFtlgMuAm3PBUdx5RWGm2cjjLwKCuAbVjUxLlqeIqi83pJRadkZ7VAjk5t+E6+/NFuLnh1b8/xcuWkTx6DMmjx2BYvx7t6NH11taqfX3xm3YZJat+wmpwXFzNparWwaJ5Anl1UhZqleDSfvaVQTxzRSK/PjyePuHtZAFb5ODmL9TrRCUW54PKw4PuK1cSt24tAbOuqPN+8R46VN62ZjXusbGuC7Id4ePjQ0xMjOJmodBs7GkUskQIsQuYCAjgCkmSOuxfmsZTjbo6o5uf2/SUTLi2/i/AWxJvYcvJLQSG7WHu8FkA+HvJ9WKlFWZCfT0xmo34uPu0WyPzlpB0qgSLTaojkKMCvBgQ7c++kyWE+9vXZlWh5UT6e+GlUTs0gwwQvlBH2R9/nB4QAt+JExvcP3DuXEq+XUHJ//5H0HXXOTQ2e6lKTUHl54c62H5fbkmSWJ2UzYjuQQRp7atGU6tE+yovihwMf38GRcchyI6SEElSBHIz0ISFNrhNaDS4twPv47ZE3759Wbt2LQUFBXTpovwNKtiHvXYByUBpzf5CiBhJktIdFpULEULgExhERQGUFhS0+DxDQofgae2B1X8L5eZyvDXetQK5uPx0BrnTlVfULNCLCagzPiUxnH0nS5QSCyegUgniQ30cLpA94uKalXn1TEzEs18/ipcuI/Daa9vEjaMp+RgecXHNiuVYrpHUvDJuOaPbXYfjzIV69gjkkztBsioCWcEl1AjkQ4cOMbaNNiRSaHvY0yjkX0AOsB5YBfxU/bPD4hvkg014UFbUcu9EIQTm/MmYVYXotuuQJKlWIJ9ZYuGj6XwL9KICvM6py5w9tCtXDoliaKxSo+gMnCGQm4sQgoBr5lJ19CgVu5u5AMwBmHNyKd+9G+9h9tt0AaxOykYImOwqlwlnENoP1O5N1yFXlsLqR+DjSaANgZ6TnBOfgsIZ+Pv7ExkZqZRZKDQLe2qQ/w30liQpQZKkAZIk9ZckaYCjA3MlWn93hMoHk6Fxs/bGKCozUVzYjdGB81hzfA0fJX1EwFkC2Wg2droM8p6M4nOyxwAhvh68OmeQc7qBKRAf6kNWSSWGSnPTOzsR/2nTUGm1FC9z/WK94hXfgtVKwOzZzTpudVI2Q2MCCe3I9fRu7hCWAFmN3MgcWQ1vDocd78GwW+GenRB87gJNBQVn0LdvXzIzMykurr9LroLC2dgjkDOANtMQxBl4B3igUvkglZW2+Byp+XJ2bk7PeUyNncrivxdzsHgH0HlLLHJLKzlVXMHgrucKZAXnEl+9UC8lr8zFkdRFpdXiN2M6patXY3XhF5lksVC8/Bu0Y8Y0q97zREEZh7JKaxeedmgiB0PmXqjPL/74Nlh2g5w1vn0jTHsFvJT3vYLr6NevH4CSRVawG3sEciqwWQjxmBDigZqHowNzJVp/D4TQommkm15T1AiPuBBf9GP09Anqw9N/PoHKM51ThkyyjFmUVJV0qhKL3Rmy4BlcTwZZwbnUOlnkuM4xotJsrXc8sLqbWOFXX2HOzKx9SI007mltjL9uxZKdTcDcOc06bnVSNkDnEMhdR0BVCWx6tq6bRXE6LL8RArvDLT9BdPNKVBQUHEFQUBBhYWGKQFawG3sEcjpy/bE74HvGo8OiDZBLLNzNZVgt9X+JN0VKnhF3tYroQC+83LxYNH4RGpUb2u5vszz3n0xaMYm8ijwCPTtPze2ejGLcVIKESH9Xh9LpiQnyxl2t4liea+qQ0/LLGLBwHb8ePdcpxrNPH7wGDSJ/8RscmzCx9pHz/PNOi69o2VLcQkLwHT++WcetTspmQLS/89s/u4L+s2HwPNj6Mvz8oJxJNpXD0uvBaoFrvwZP5b2u0Hbo27cvGRkZHDjQthoSKbRN7LF50wMIIXyqn7etlT0OoCaDrMZGdl4BURENW+40RGpeGd26eOOmlu9BIn0iWTJtCVd98gXdu2i55oIYhBBcGHVha4ffZvn7RBF9I/zw1Kib3lnBobipVXQP1nIsxzVv542HcjBZbaz8+yTjeoWcsz3y5Zco37Gj9nnJd99T+tPPhD3yCELt2L8f86lTlP26leC7/tmsVr6ZxRXszSjm4Sm9HRhdG0KlhhlvgFcgbF8MFUVyJjl7P1y3XKk3VmhzjBw5kpSUFL799lsqKysZOlSZ3VBomCYFshAiEfgCCKp+ng/cKElSh70FO7NZSMbJnBYJ5JQ8I71C6ybau/p2JYQL0Zo9mdVzeLPOt2/DGvZtXHPGiGDQ5GkkXnxJs2NzBUVlJnaeKOLOcT1cHYpCNfGhPiRlumZ5wbZj+QBsPJRLlcWKh1td0eseHY17dHTtc5W3N6fuf4CKv//Ge3jz3jtnUv73bvLffQffCRMImDMHoTp3Eq3om29ACAKuvrpZ515TU17Rkd0rzkYImPQ0eAfBhoXy2EQd9FLcKhTaHh4eHsybN4/ly5ezatUqKioqGDNmTJuwlFRoe9hTYvE+8IAkSd0kSeoGLAA+cGxYrsXb37223XRT3fTqw2y1kV5QTo8Q7TnbArw1tS4W9iJJEn+sXEZ5aQnagEC0AYFYzSbWvbuYE/tcb4dlD+sP5mC1SUxNjHB1KArVxIf6kF5Y3mAtsKOoslj5I7WAHiFaDFUWth9r2m/cZ9w4hIcHpevWt+ia1uJisp58ihPXXUf5XzvJXqjn+LXXUnlWPaJkNlO8YgU+48ahiYxs1jXWJGXTO8yXHiGdZ11BLWPvhys/hIsfk39XUGijaDQarrnmGvr378/GjRvZtGmTq0NSaKPY0yhEK0lS7V+QJEmbhRDnKr8OhLunG26efpgMUJjXdDe9s0kvLMdik4ir54vS30tDTmnzprWzU45iKMhjyvz7SbhI7kRmqijnqyceZNWi57n+udcICD8tPEvzcslOOUqvkW3HEH11UhZRAV4kRrWTVrqdgPhQHyRJLgfqF+m8/5ddJ4qoNNtYcGlvHl2xj9VJWYzv0/gsjUqrRTt2LIb16wl77NF6M78NUbpmDdn6/2ItLSXo1lsJuXs+hl9+Ief5F0i76moCrr66VgybMzOx5uUTcM3cZr2mXEMlf50o5N4JnbisYEDz7PAUFFyFWq1m1qxZqFQqtm7dSkJCAmFhYa4OS6GNYZeLhRDiSSEtxgmEAAAgAElEQVREbPXjCWRniw6NT2AQACUFzW8WklrtYFFfBtnfS1Nr82YvyTu2o1KriRs6onbM3cubKx56EoAfXn4GU2UFVouFP3/4lk8W3MX/Xnue/PTjzY79fLDZJI5kn+uKUFpp5rdjBUxJDFemstoQPcOqnSxynetksS05H7VKMK5XMBP6hrL+YA4Wa9MOFX6TLsWSnU3l/v12X8u4dRunHliApmtXuq9cQdjDD6HSavGfPp24n38iYM5silesIG/RIvIWLaJ4+XI8esbjc2Hz1gasO5CDJMHU/p2ovEJBoR0jhGDy5Ml4enqyceNGV4ej0AaxRyDfCoQAK6sfIdVjHRrfIC024UV5cfMFckq1M0B9U61+XhpKK8xIkkSl0UjBqYzah6Eg/5z9JUkiecd2uiYMwNOn7vkCwiO4/L5HKTiZwY+vPMcXj9zL1q8+JTxOzmJlpx5rduznwxu/HGPyol/5aV9WnfFNh3MxWW1M7QzWV+2I7sFaVAJSnNxRb9uxfIbEBODrqWFqYjhF5WZ2pDX9PvMZPx40GkrXrbPrOqYTJzi1YAEe8fF0++RjPHvXXTyn9vcnYuFC+uzdQ599e2sf3X/4odkLAdckZdM9WEvvsA5t8KOg0KHw8vJi7NixJCcnc/z4cVeHo9DGsMfFogi41wmxtCm0Ae4ItRZzafObFaTmGQn28ahtLX0mAV7umKw2KqosfL7gLsqKz+jWJwTT/vUgfcZcVDuUdyKN4pwshs+4qt5rdRswiIvm3crmzz/Et0sIMx96krghw3njlrnkpCY7bRHf0RwDb25KBuCltYeZlBCGptrBY/X+bEJ9PRgS03ks7doDHm5qunXRkuxEgVxUZmL/qRLum9gLgIt6heKlUbMmKZsx8cGNHqv280M7ciSGdesJffDBRmcjrMYyMu6+GyEE0W+/hUrbcFWYcLOn0qxhispM/J5awD/G9VBmSBQU2hkXXHABO3bsYMOGDdx2221t9j2s1+v/A1wHWAEbcKdOp9vR+FH1nmcG0E+n09ntm6nX6wcD9+h0utvq2bYEGAaYgT+r4zLr9fqZwNPVsVqA+3Q63bbqY24Cnqg+xTM6ne6zes4bBCwDYoHjwBydTlek1+svBy7Q6XRP2Rt/S2kwgyyE+LGxh6MDczVafw9UwgepvOFV/qaKcj5/5F7+WFm3LW5KXhlx9ZRXALWi+WR6BmXFRQyafDnT7n2Iafc+REhMLL9+9SkWk6l2/+Q/tyOEivjhIxuMY8hlM5mre56bX32b+GEjECoVYd3jyHFSBtlqk3j42334emp46eoBHC8oZ+lfGQCUmyxsPprL5IRwVKq2+cHTmYkL8eGYEwXy9pQCJAnG9pTFsJe7mot7h7D2QDY2m9TE0eA76VLMGRlUHT7c4D6SzUbmI49gSjtO1OuL6rhhOIL1h2oWoCozJAoK7Q2NRsP48eM5depUm20iotfrRwGXA0N0Ot0A4BLkLsfNRqfT/dgccVzN48DiBrYtAfoA/QEv4Pbq8Y3AQJ1ONwi56uBDqBW+OmAEcAGg0+v19WXPHgU26nS6ntXnerR6/Cdgul6vd7jZfGOpk1HI/wFfAzuATqVuZIGsRVPZ8CK9nau+J+94KnnHUwmMiKL3KHlRXGqekSkNuDXUCOSMo0cAGDBxMiHdugPg5evPt88+wd71PzN02hWAXH8c1bcf3v4Nd58TQhDdL7HOWFiPePau+xmrxYL6PDNkZ/LS2sOUVJhZcGlvArXuAHy6/Th7Mop5/ZpBzBgYyTe7TvL6hmSuHBzFr0fzqDQr5RVtlZ5hPmw+kovZaqvN+DuSbcfy8PV0Y2D06QYSUxLDWZ2Uzd/pRQyLDWr0eN+JE8nWLaR03To8+/ZFslgo+uprilesQLJYAJBMJswZGYQ9/hjakQ3fWLYWa5KyiQrwon+U0hRDQaE9MnDgQH7//Xd++eUXevfujdrBXustIALI1+l0VQA6na62HlOv108EXkbWc38Bd+l0uiq9Xn8c+AyYDmiA2Tqd7rBer78ZGKbT6e7R6/XTkTO57kABcL1Op6tj3aXX632BATqdbm99gel0up/P2PdPILp6/MzMixaoyYBMBtbrdLrC6mPWA1OQteaZzAQurv79M2Az8IhOp5P0ev1m5BuG5fX/c7UOjSmncOBS4FrktP5PwNcd2f/4TLz93UHlg4epHLPFguYskVlWXMTOVd8RN2wkFaUlrHnnNQIjInELiaao3NxgBjnAWxbIuanHcNO40yU6pnZbtwGD6DZgMH+sXEbi+EsxFhVScDKd8Tff2ez4w+J6YjGbKDiZTmhs63gPl5ssvP9rKmarxE/7snj8sr5c0D2Il9ceYWKfUGYMjEQIwaNT+3Dl29v5aFsax3KNBHpruKB748JHwTXEh/hgsUmk5BnpE+5YJwtJkvj1aD6jenSpbaADMKFPKO5qFauTspsUyG5BQXgPH45h3Xp8J0wgW7eQyoMH8Ro8GLczVqEHXjOXwHnzHPZaajBUmtmWnM+8Ud3a7NSsgoJC46hUKiZOnMjSpUv58ssv8fLycnVIZ7MOeEqv1x8FNgDLdDrdFr1e7wl8CkzU6XRH9Xr958BdwKLq4/J1Ot0QvV4/H3iQ09ndGrYBI6tF5+3Aw8hWvmcyDEhqKkC9Xq8B5gH/PmNsFvB/QCgwrXo4irrZ75PVY2cTptPpahY0ZQNn2ozsBC7EVQJZkiQrsAZYI4TwQBbKm4UQekmS3nRkUG0BbYDcLESFxKmsPGK71s0I/7FyGRZTFeOuvwUPb2++fOw+fnj5GRLv0gHUa/EGpzPIxRmphHTvgeqsO9ULr7uZLx/9N3/9uAI3dw8Aeo4Y1ez4w3vEA5CTeqzVBPKOtELMVoknpvVlTVI2D327D627GrVK8MysxFqBMCQmkCkJ4by3JQUhBNP6R9QRRApthxE9gvDSqHls5X6W/mPkOQ07WpPjBeWcKq7gnxfV/Xv09dRwYc9g1iRl88S0vk0KTd9Jl5Lz9DMcnzMXt5AQohYtwnfyJJcI1F+UBagKCh2CXr16MWzYME6cOEFZWZmrw6mDTqcz6vX6ociicDywTK/XPwrsBtJ0Ot3R6l0/A+7mtEBeWf1zF3BlPaeOrj5XBHIWOa2efSIAe/xu3wZ+1el0W8+I+zvgO71ePw65HrlFi6KqBfyZNXi5QPOM6ltAo3Pv1cJ4GrI4jkWuQfnO0UG1BWraTQOcOpVTRyAXZ2exb8NqBkycTI7wJdrTi5kL/sPShY+w65NFqNTjGxXIQrJRkZVO74nndpsK6x5HnzEXseunH/AJCiKiZ298gxpfvFQfAWEReHhryUlNpv+E1ulqtS05H3c3FTeM7MatY7rzza4MXt+QzAOTehPhX/eO+6EpvWtrM6co1ldtluhAb16ePZC7v/qbp74/wPNX9XeY0NyWLH/Gju15bmvpaQMi2Hg4lx1phYzs0aXR8/hNnkzh55/jc+E4Qu77N2of1zXmWJOkLEBVUOgICCGYNm1a0zs6ibvvvrvOc51OZ0UuM9is1+v3AzchC+TGqKr+aaV+vfcG8KpOp/tRr9dfDCysZ58KwLPmiV6vX4uczd2p0+lurx7TITuc1TvdrdPpftXr9T30en0wcIrTpRMgi/TN9RyWo9frI3Q6XVa1gM89Y5tndVwOpUGBLIT4HEgEfgb0kiQ1mWLvSGj93WvbTeec1U1v29LPUbm5ETZuOtMWb2VAdABL/zGSS++4hzVvv0ZiaBRRgdPrPa+fl4YAczGSuYqw6izv2YyZO4+jf/xGcXYWAy6Z2qL4hUpFaPc4slNab6HetuR8hscG4qmRs4xzh8cwd3hMvfvGhfhw/YgYVidlMyau+QJfwXlMGxDBoax43tx0jIQoP24cFeuQ62xNzicqwIvYLueurZiaGMHCHw/w1Y70JgWyW3Aw8WvXOiTGpsgqqaDAKC+itdokNh/J4+qh0coCVAUFBYeh1+t7AzadTpdcPTQIOAEcAWL1en28Tqc7hlzisKUZp/ZHFqwgC+76OMQZZRc6nW7yWbHdjlxXPFGn09nOGI8HUqqzv0MAD+Q657XAc2cszJsEPFbPdX+sjun56p8/nLGtF3aUfZwvjc173wD0RK4n2S6EKK1+GIQQpY4OzNW4uavReMuLbgryTvsTZ6ckc+T3rQy7fBaL/8jF3U3Fnoxinvg+ib4XjqfCL4JhpXsR1N/4wNfDjTCTnElrSCAHhIUzaNJlCKGi14jRLX4NYT3iyU9Pw2ppXmOS+sgtreRIjoGx8edm/xpCNz2BTQ9ejLubUl7R1nng0l5M7BPKf/93kN9Tmm793FyScwxsTc5nXK+QejPUXu5qrhwSzeqkLPKNVfWcwfWUVpq56KXNXP7GNi5/Yxsz3/qNCrOVy/or7dMVFBQcig/wmV6vP6jX6/+fvfuOr7I8Hz/+ec7Myd57DwKEBELYSwHZigMHaFu1rVa/VTt+9tthLaVql9Zu19fWVRVHHThApuxNIJNMsvfeOev5/XFIIGSHc5ITcr9fr7xe+oz7uU+MyXXuc93XlQJMBX69efPmDuB+4IOLq8pm4KUhjNeVrvDri/eeBno3YgA2b958HnC7uFmvLy9hWVE+umXLlrNbtmzpKr+2AUjbsmXLWeCfwF2bN2+WL27OewrLhsKTwG8u27D36pYtW2ZdvP/3wIotW7bkYEnNuLzyxlIs++JsaqAc5Akf1bh4etBSCU21loDBaDCw998voXNxRZmwlF2vn+Unq2LpNJr5254c4gJdyfRJYmbe5+SdPE5MH8GtQiERbKpFVqrxDOq//NSSb9xP3PU34OY78vQE/6gYTEYjNUWF/QbjQ3Uo1/L/zuKYoa8GKxUSzlrrVdAQbEehkPjzxhnc+s/DPPpuMkd/vsxqVS0a2ww88OYpnLQqHlve/8/hPXNDef1IAR+eLuGh66Ks8mxryqlsQW8084PlMcRdbM3t7KBiXqTYgCoIgu1s3rz5NNDnatnmzZv3AIl9HA+/7J9PcSmtwQuou3j8U3quzPbn38BdXCzVdsVz+vwjv3nz5j8Af+jn3L8vjnnl8e9e9s+1wPIrr9myZYsfoNu8efPQW6qO0IQPggfi4qFDVjjS0ViPLMvsfe0lynOzWP6dh3l2XyG+LlruXxjOD5fHsGKqH09/kckxcxCyixcntn2ILPdd19Wvs5pO90AUiv43RClV6iFvriuqbWPDi0f4vwP5GC5r2esXaemoZ416yIdyavBy0jA1wLaVDoSx4+qg5ierYqlp6eRs8fAb5PTFZJZ55N0zlDa08/I3Z/bKVb9cjJ8LcyI8eed40ZBqIo+2ro6Dt80MYmWcPyvj/FkQ5S2qVwiCMC5s2bLlIeA+4D/DvPVFLuUzj7VQelfasAmxvDcAJzdLJQtDcwPndm0ndc9XzLnlDgpdYzhdeJrf3RaPo8byLXz+zunc+sIRcqta8J6/koqd71KSmUbI1PgeY5pNJtzaq6jzTrLKHFs7jTzw5inyqls4XVjPf8+U8Myt8SSFeeDm64eDkzMV+TkksHrEz5BlmYO5NSyI9ha5lte4+VHeKCQ4mF3N7EFKrg3FH3ec52BODb+7LZ6ksMHHu2duKD/YepbDeTUs7mMz31jKqWpGo1IQ7GHz+vSCIAhWt3nz5pcYWgrGlfd1AG9Zf0bDt3nz5pOj9SyxgjwAR3dLsxBtfQn7Xn+ZyJmzmXv73fzxqywifZy4I+lSioSLg5pXvzWLG6b4seLmG9G5unFy2397jVlbWozSbKTWwfeq52c2y/y/98+RU9XM6/fP4eVvJtHYbmDDi0fY/Kklf90vKobKq9yol1XZTHVzJ4sHaQUsjH9uOjUJwe4czO0zHW1YPj1byssH8vnmvDA2zel7M+eVVk/zx9NJw9vHiq76+daWW9VClI8zSvEmURAE4ZonAuQBdLWb1hjbUbh6075gI7/bkU1uVQv/u2pyr9q+4d5OvHrvLIK83Zi5+iYuJJ+iuqigxzWVeZZNqOVqb6oKm2hv1jNS/9iXy470Cn6xdgqLYrxZFefP7h9fx52zgnnjaCHpZU34RURRU1zYo331cB3KsQRLi4aRfyyMX4tjvDlX3EBj+8g3d1Y0dvDLj9OYHe7Br26aOuT7tColtycFsyuzksqmjhE/3xZyqlqI9h27knKCIAjC6BEB8gCc3DVISm86FVpec1zKL77I5bXDBSyK9mZVnN+A905ftQ611oFTV6wiV+TnIqs0VJhd+Pi5MyTvGtlK2c70Cp7flc1tiUF8Z1HEpTlrVfzP9ZaNUGmljfhFxWA2Gam5IlAfjoM5NUT6OBHobnfdhQQbWBzjg1lmxNUsZFnml5+kYTCbefb26cPe7LdpTigms8yLX+dxqqCu+6tNbxzRfKyhTW+ktKGdGBEgC4IgTAgiB3kATm5alNoZrHrwDu6Pu5QP6eviMOjGHJ2zCwk3rOLM9s+YtnQFIXEJgKXFNN7BqFtNGA3mEa0g51Q286P3zpIQ7MZvb+vd2CHMyxEXBxUppY2sXWTZqFeRn4t/9KRhP6vTaOL4hVrumhUy7HuF8Skx1B0njZJDudWsHkGHuC9Sy9mdWckTa6cQ7t13y/WBRHg7sTjGm9ePFPD6kYLu43ckBfPsHdOHPZ415Fe3IsuIFWRBEIQJQqwgD8DRTYMkSehkFQFuuu6voeYgzr/9Hjz8A/nsz7+nqboKk9FIVWE+Gv8wfAyWMfTtpmHNqatklk6j4uVvJnU37bicJEnEB7mRVtqIi7cPOhdXKvNz+hhtcKcL6+kwmO1uw5RgO2qlgnmRXhzMGX4ecn2rns2fpjM92I37F4aPeA5/25jIW9+Z0/11wxRfdqRXoDf2XV/c1nIvVrAQK8iCIAgTg1hBHoCTqxaA1oaRVTfROjpy80+e5J0nfswnzz3N8vsfwmQw4BYcgX+55b1J5zDyPC8vmfXuA/MGLJkVH+zGvw9dQG8y4xcVQ0Xe0ALkfVlVPPlJGh0GSyDSYTChUkjMixq4u5lwbVkU482e81UU17UR4jn0qg1PfZFBY7uBtx+Y2ytHfzg8nDQ93pR1GszszqziaH4t100a/TdrOVXNKBUSYV7DXxEXBEEQxh8RIA9AqVbg4KymtXHkG9w8A4NY+9jjfPyH3/DZXyyNYDxDo/A/ZummN5wV5MtLZs0apARXQpA7BpNMdkULQbFTOfzeW7Q1NeLo6tbvPblVLTz6TjL+bg4suSwImRboJhp+TDBdDWEO5tRw99y+K1AczavllQN5tBssP8NmM5woqOOxZdFM9rduvexFMd44aZTsSCsfkwA5t6qFcC9H0RVSEARhghC/7Qfh5KYd8Qpyl8jE2SzedC+t9XVoHZ3w8vXH22RJsehsH9rGo89Tynj5QD7fmBc6pJJZCcGWQDiltIGwhBkAFKWe7ff6xnYDD755Cq1KwRvfnsNvb43v/uovQBKuXVE+zvi7OnAot7rXuZqWTn78/lk2/d8xMsubMctglgEJ7pwVzPeXXV3Xxr44qJUsm+LHzvRKTMNsIvLh6RK+TC3vt3HPUIgKFoIgCBOLWBYchJO7hrbGq28gM3v9BpqqK1EoVahazCiRUDoq0bcNLUD+x95cpgS48qsb44Z0fbCHDndHNakljWyaHYeDkzMFKclMXnhdr2tNZpkfbE2mqK6Ndx6YR5CoVjHhSZLEohhvdmVYAlKlQsJslnnvVDG/336eNr2R7y+N4pGlMeg0/XeEtKY10/z57FwZJy7UMX+IKT+fJJfy+AfnAMuq+FM3Txv2xkG90UxhbRtrpwUMe86CIAjC+CQC5EE4uWmpLWm56nEkSeKG734fgEM7LgCg9NehL2hFluUBq2JcqGnlfEUzT944dcgf8XZt1EspaUShUBIyLYHC1LN9Puu5nVl8nVXN07dMY07E1XdPE64Ni2O8+fB0CWmljWhUCp74OJUzRQ3MifDkmVumEePnMqrzuT7WBwe1gh1p5UMKkFNLGvnpf1OYE+HJ2mn+/GlnNiv/coCHr4sasEtgsIeuRxBdUNuKySyLFWRBEIQJRATIg3D1dqC1SU9ZTj2BMR5WGbOtvI02SUbhosJsljHqzai1/a/CbU8rBxh2ya34IDdeOZBPh8FEWHwiOcePUFdWglfQpZJtn50r48Wv89g0J5RvzAsb2QsSrkkLL3ZO/MXHqZyvaMZNp+a5O6azYWbQoGUObcFRo+K6ST7sSK9g801xA7Y9r27u5MG3TuHlpOGFe2bi7axlbXwAT32RyV/3DLxh1cVBxbGfL8fpYt59VwULESALgiBMHCJAHkT89cFkHa9kxytp3PHz2bh4Olz1mHUlLVSqzCiR0QL6duOAAfKOtAqmB7sNO/UhIdgNo1nmfEUz4QmJABSmnO0OkNNKG/nJh+eYFebBlvVDS90QJg5vZy3TglxJK21i4+wQfrp6Mh5OmjGd05ppAXyVXklycQNJYX2/YdUbzfzP26epb9Pz4UML8Ha2VKPxdXXg75sSeWxZNA39VI8prG3j8Q/O8dm5MjZezPXPqWxBkix52YIgCMLEIALkQWgd1ax9OJ4Pf3+K7S+lcuvjM1FfRc6lQW+irryNRicJN9mMFstGPSd3bZ/Xl9S3kVLSyE9XTx72s+KD3QFILWlgxvxw3P0CKExNZuaam6ht6eR7b53Gw1HDi99IErvzhT79fdNMWjuNTAvqv/rJaFo2xRe1UmJHWjlJYR606Y38dXcO750qxmiybMIzmWXaDSb+unFGn/MeKDVkVpgHrx7M5+3jRd0Bcm51C8EeulHLtRYEQRDGngiQh8DD34kV34njixdS2PfWeVZ8e+qIP2KuLWlBNsu0OStpNpvxxLKC3J8daRWAZYPScAW6OeDlpCGlpBGAsIQZZBz8mo5OPQ+/fYaalk4+eGg+Pi59B+eCEDGCTni25OqgZlG0N9vTKpgT4cWvt6VT2tDOuoQA/F0vfbqTEOzGzTOChj2+JEncPTeUX32aTkpJAwnB7uRUNhMtVo8FQRAmFBEgD1F4vDfzbo7k2Cf5+Ia5MOOGkZU+qypsBsDkpqbZZKkfO1Cptx1pFUz2dxlRy15JkogPdiO19GKAHJ/IuV3b+cObX3HigoI/3zWdhIurzNbQ1qQn41AZ05eHDJgyIghXY820APb9N4UH3jxFrJ8LHz40f9C64MNxS2IQv/vyPO8cLyIu0I38mtYedcEFQRCEa5/4XH0YZq4KI2K6N8e35dM6wtJv1YVN6Fw1OLiqqddbAuT+VpCrmjo4XVTPmqsoLxUf5EZ2ZTPtehMh0xJAksg4dYoHFkdwa2LwiMe9kizL7PvPeY5vyyd5V5HVxhWEK62K82depCc/WzOZzx9bZNXgGCyr1DfPCOTTs2VklDWhN5rFCrIgCMIEIwLkYZAkiYW3x2A2yZz8/EKv87IsU1vWMmBDgqqiZnzDXHBz1FBnsGwU6uynFvJXGZXIMqyJH356RZf4IDfMMmSUN5Jeo6dS40ucXDGinOaB5J6uoiClBp2rhuRdRbQ1jbz7oCAMxM1RzdYH5/PQdVGor6Kd9UDunhtKu8HEszuzAIj2EwGyIAjCRCIC5GFy89ERtySIjMPl1Fe09jh36ssCtv7mBFnHK/q8V99hpL68Fd9QF9x1amo7LYFxfyvIO9LKifRxIuYqykt1pVDszKjkof+cocEzAuemcowdbSMe80rtLXoOvpeNb5gLt/woEZPBzKkver+BEITxIiHYnfggNw5kWzoJihJvgiAIE4sIkEdg1ppwVGoFxz7N7z6Wf7aaE59dQJLgzFdFyH20w60paUGWwTfMFTedmrpOA5JC6jNArm/Vcyy/jjXT/K+q5qyfqxYfFy0v78+nrdPI/XeuQpbNFKenjHjMKx36IIfONiPLvjUFzwAnpi4KJP1gGQ1V1gvCBWG03XOxxbqfqxZXB/UYz0YQBEEYTSJAHgFHVw2JK0PJT66mIr+R2rIWdr+WgW+YC9ffM5n68lYK02p73Vd9cYOeT5gLrjo1MqDRKfvcpPd5Shkms3xV+cdgSQtJuFjq6vm7ZjBnTiJqBx2ZB78eMBVkqApSa8g+XknS6jC8giyrbLPXhaNQSRzflj/I3YJgv26aHoizVkWM7+h2DBQEQRDGnqhiMULTl4eQur+UQx/k0NFiQKVVsuaheHSuGk5+eYEzOwsJT/DucU9pdj1Obhqc3LS4O1oaLii1yl4ryO16E//Yl0tiqDtxga5XPdfHV8Vyx6wQVsVZcpnnrN/A4ff/w5kvt5G07uZhjXXkv7kUZVwK/ptrO/AMdCJpdXj3MSc3LTNuCOXUlwUkrmjCN+zqX4MgjDYnrYqXvpGEu6NYPRYEQZhoxAryCGkcVMxZF07lhSaa6zpY8+A0nD0cUCoVzLghlPLcRsrzGruvzzhUxoVzNUyeb1kRdtNZ/ugqNIpeAfJrRy5Q2dTJz1ZPtkpL3ykBrj3aVM+99U6iZ89n/1v/ojDl7JDHMehNnNtXjCyDm48jbj6OhE3zYuV341Cqe/4oJa4IxcFZzdGP8656/oIwVhbFeNtNkxRBEARh9IgA+SpMWRRIzCxflt83hYDoS/WEpy4MROukInlnIQDleY3sfzeLkKmezFkfCVwKkGW1okeKRX2rnhe/zmP5ZF/mRnrZZN6SQsGa7/8Iz6BgPv/rH2io7HtT4ZXKchowG2UW3h7NmofiWfNQPCu/Ow2vwN4bmDQ6FTNuCKHkfD1NNe3WfgmCIAiCIAg2IwLkq6BUKlj53WlMmt2zDJtaqyT++mAunKuh+HwdO15OxcXTgZXfiUOhsKwIdwXIZlXPTXr/3JdLa6eR/7VyGbYraXSO3PKTJ0GW+fTZp9B3DB7EFmfWoVQpCIweWnOR6CQ/APKSq69qroIgCIIgCKNJ5CDbSML1wSTvLOKzv51DpVaw/oczcHC6lMvYlddoVEp0tvrsrugAACAASURBVFnqIZfUt/Hm0UI2zAwm1t/2G4Pc/QO48Yc/47+//RU7/vlnbvrRz5AU/b9nKsmsIyDaDZVmaF3y3Hx0eIc4k59cReKKkXUeFK6evt1IU22HVcaSJHD3d0Rpo/rDgiAIgmAPRIBsIzoXDVMXBpL6dQk33D+1VxpC1wqyXpKh3YjBZOb5ndkgwY9WTBq1eYYlzGDJN+5n/1v/4tjH7zF/w6Y+r2tt7KS2tJX5tw6vaUlUog/Ht12gpb4TZw+tNaYsDNMXL6RQltNgtfE8/B257u5YgiZ5DHhdV5UUa+TRC4IgCMJoEgGyDS28PZq4xYHd5c8u56BWolMrOVpUz/xOFTG/2A4SfG9JJIHuulGdZ9K6W6guyOfI+2/jExpB9Ox5va4pyawDIGTK8Nr6Rib6cnzbBfLPVpOw1HqtrYWhMehNVOQ1EjPLl6gk36ser7PNyKkvC/jk+WQmz/NnwYZodC6aXtfJsszu1zNore/kxkemD/lTB0EQBEGwByJAtiGlStFncNzlLxtnkHOgDOlcA48vjcbZRcNds0c/FUGSJG548BFqS0v48h9/4p5n/oRXcM95FGfW4+Csxjt4eB3FPAOc8PB3JD+5SgTIY6DqQhNms8ykuf6Ex3sPfsMQxMz24/SXBSTvKuJCag03PToDv/CepfxyT1WRfbwSgH1vn+eG+6aKlWRBEARh3BCJhGNoVZw/yxIsKQvfmh3KfQsj0I3RSptao+Xmx59ArdXyybNPoW+/1AVPlmWKz9cRPNkDSTH8ICdqpi9lOQ20N+utOWVhCLpKDfpHWq9UmVqjZN4tUdz1xBw0Diq2v5hCa2Nn9/n2Fj0HLrYen70unOzjlZzbU2y15wuCIAiCrYkAeYxpdZZFfH27aYxnAi5e3tz4w5/SUFHOqc8/6T5eV9ZKW6N+2OkVXSITfZBlSztuYXSV5zXgEeDUY4OotXgGOrH24Xg6243seDkVk8EMwKH3c9C3W1qPz14XQWSiD0f+m0txRp3V5yAIgiAItiAC5DGm6Q6QDWM8E4uQqfHEzF3Aqc8/prWhHrCUd4Ph5x938Q52xtXbgXxR7m1UyWaZivwmAqJt1+jCO9iF5fdOpSK/if1bsyytx09caj0uKSSW3zsFjwAnvno1jfSDpWQeKSfzSDnZJyswGc02m5sgCIIgjJQIkMeY1tESIHfawQpyl0Ub78Wo7+TYR+8Blvxjdz9HXDwdRjSeJElEJfpScr6ejlb7eCMwEdSVt6JvNxIQZdtOcNFJviStCSPzcDlfvZreq/W4xkHF2ocTUCglvn47i71vZrL3zUx2/SuD80fLbTo3QRAEQRgJsUlvjGkculaQjYNcOXo8A4NIWL6KlN3bmbHyJspy6pmyIPCqxoyc6UPyriIKUmuYPC/ASjMVBlKeayntZusAGWDuTZHUlrRQmFbL0m9O7tV63M1HxzefXtAjD/3Tv54lL7mauMVBw36eyWDusfqsVCl6PVMQBEEQRkoEyGOsewW5zX4CZIB5GzaRfmAve177N0b9QkKmDFzzdjB+Ya44e2jJPFxO7Fx/UdFgFJTnNaJz1eDqbfuygZJCYvX34mmu68Dd17HPa9RaJWrtpblEJfpwbncxHa2GYeVIt9R38PbmYxj1lwJktYOSbz29AAdn6+daC4IgCBOPWHIZY5dykO0rQHb28GTWjbdSnHYc2Vw5aFOIwUgKiaTVYZTlNIiP1UdJeV4jgVFuo/ZmRKlS9Bsc9yUq0RezWaYgpWZYz8k9XYVRb2bu+ggW3h5N/NJgDB0mqkuahztlQRAEQeiTWEEeY10fDdtbgAwQd92NHPvoU8ydX/Dpc2ndx4OnTGPW+ttQa4bXGS9ucRDZJys5/GEuoXFeOLmJznq20lLfSXNth13XnvYNd8HZQ0tecjWT5w897SY/uRqvYGdmrY0ALF0eU/eVUF/eSsjkkW0kFQRBEITLiRVkO6DVqei0wwD53N5KNM6r8AwKwGgwYDQY6Gxr48gHb/Pm449QcPb0sMbLTz7BpFl6jHozB7Zm22jWAljKuwEERLmP8Uz6J0kSkYk+FGfUoe8Y2s9/a2Mn5fmNRCX6dB9zdNWg0amoL28b4E5BEARBGDqxgmwHNDqV3a0gN1S2kXGwjIRli7nu7u/2OFeUdo7dr77Af3+3mUnzF7PywUfQOjoNOJ7ZZGLHi3/FZDAwa/3PSd5VTd6ZKqJmXn37Y6G3irxGVGoF3qHD63w42qISfUnZW0Jhai0xs/0GvT4/uRpky31dJEnCM8CR+opWW05VEARBmEBEgGwHNHa4gnx8Wz4KlcSsdeG9zoVOm863nv0HJ7d9yJH338YnNJx5t9014HglmWl0NDcBUJ71CV7B69i/NRuNgwpJKTbsDYVXkBM6Z82Qri3Pa8QvwhWl0r4/JPKPckPnqiEvuWpIAXJecjXufo54BPTMdfbwd6IgdXi5zIIgCILQHxEg2wGto32tIFcWNJF7uopZa8P7zRNWqdXM37CJ84cPUJ5zftAxs48fQaXRMm/DRg69+wYLN84jebeObX87a+3pX7M0OhXzbo4kbkkQigFafus7jNSUtDBzVegozm5kFAqJyBk+ZB0rx6A3oR6g1Xp7i56ynAZmrgzttfHQI8CJzCPldLQYRCULQRAE4aqJANkOaBxUtNR1jPU0AJBlmaMf56JzUZO4YvAAKyAmlvzTJ5Blud9qCbLZTO7Jo0TMSGL2+tvIP32C05+/xYYnnsdkHFnzkYnGZDSTvLOIA1uzOX+0nOvvmYxPqEuf11YWNCGbZbvOP75cVKIP6QdKKc6oI3KGT7/XXThXg2yW+0zL8fC3rCjXVbQSGD0+XrcgCIJgv0SAbAe0OqXd1EHOT66mNKuBxXfFdJegG0hAdCzpX++msaoSdz//Pq8pyz5Pa30dMXMXoFAoWfm9x3jrp49yctub3PTDn1r7JVyzQqZ4knOqkkMf5PLB706y9uEEwhO8e11XntMAEvhHuo7BLIcvcJI7WicVeclVAwbI+cnVuHg54B3SO6/aM8CSA19fLgJkQRAE4eqJANkOaBzVdpFiUVvWwp43MvENdx1yd7OAmFgAynPO9xsg55w4jFKlInLmHAC8gkOYt2ETh997i/zrlhGZONs6L+AaJ0kSk2b7ExbnxdanTpB+sLTPAPlCSg1+4a5oHcdHqoFSqSBiug85Jytpqr5UGcXD35G5N0fi5Kals91IcWYdCUuD+/ykwsXTAZVGISpZCIIgCFZh3zt4JgitTonxita5o62j1cCXL6ai1ipZ+1A8StXQfjS8Q8JQabWU52b1eV6WZXJOHCUsIRGt46WNVbPXb8DZw5PUPTutMv+JROuoJirRl6LMul5vrBqr26kpbulR5WE8mL4smKBJ7qg0ClQaS23wrBMVvLP5GKlfl1Bwrhqzqe/0CrA0ovHwdxKVLARBEASrECvIduDybno6l6FVKbAms8nMzlfTaKnv4NYfz8TJfegNPBRKJf6RMVTk9F3XuDI/l6bqKuZv2NTjuFKlInrOAtL27cLQ0YHaQeQiD0dkog/n9hZTkFbDpNmXVu7zk6sBiJrZf6qCPfIOduGmR2f0ONZQ2cb+d7M4sDUbhVLCyU2DX3j/aSMe/o6U5TbYeqqCIAjCBCBWkO2A9mKAPFal3o5+nEdxZj3XbYrFP9Jt2Pf7R0+iqiAPo8HQ61zOiSNICgVRs+b2Ojdp7gKM+k4unD01onlPZF3l0fLPVPc4npdchXeIM67eujGamfW4+zmy/gczWPGdqehcNExZFIg0QPUOD38nWuo6h9x0RBAEQRD6IwJkO3D5CvJoyzpewdndxcRfH8zUhYEjGiMgJhaT0Uh1QX6P47Isk3P8CCFxCehceq/8BU2JQ+fqRvbxIyN67kTWVR6tML0Wg94EQEt9B5UXmsZdesVAuvKu7/v9QubcGDHgtV0b9RoqR56HLMsyRoNpxPcLgiAI1wYRINsBzRitIFcVNrHvrfMETXJn4R3RIx6ne6PeFXnItcWF1JeXMmnugj7vUyiURM+eR/6Zkxj1+hE/f6KKSvTBqDdTnF4HQP7Z8ZleMVT9lRHs0tU8pK58ZHnIslnmq1fSeHfL8THdDyAIgiCMPREg2wGt4+ivILc16dn+UiqOrhpWPTjtqjquuXh64+zpRXlOzwA58/B+kCSiZ8/v995JcxZg6GinMDV5xM+fqC4vjwaW/GOPACc8/Adu+32tcvXRoVBKI65kceLzC+QlV9NU09H9ZkMQBEGYmESAbAc0DhdXkEepFrLJaGbHy6l0tBhY83D8kNsXDyQgOrbHCnJrQz3J2z9j0pwFOLl79HtfyLQEtE5O5Ig0i2HrKo9WkFJDS30HZTkNRCVem6vHQ6FUKnDzdRxRJYu8M1Wc+rKAyQsCcPFyIP1gqQ1mKAiCIIwXIkC2A6Odg3zgvWzK8xpZdu8UfEL67sY2XP7Rk2isrKCtqRGAYx9txWjQs2jTtwa8T6lSE5U0l7xTxzEZxeaq4YpK9EHfYeLA1mxk+dpNrxgqzwDHYadY1Ja2sPuNTPwiXLl+UyxxiwMpzWoQJeMEQRAmMFHmzQ6MZoCcdqCUjINlzFwdRswsP6uNGxgzGYDynCw8g4JJ2b2DhOWr8QgYvOFIzNyFZBzYS3F6CuHTZ1ptThNByGRPNA5KLpyrwdVHh1dQ7y5zE4mHvxP5ydWYDGaUasv7/6KMWiovNPV7z/mj5WgclKz5XjxKtYLJ8wM4se0C6YfKWHR7zGhNXRAEQbAjIkC2AwqFhNpBafNNemU59Rzcmk3YNC/mro+06th+kdFICgUVuVlkHtyHQqVi/u2bBr8RCE9IRK11IOf4EREgD5NSrSAs3puck5VEJfoMupHtWucZ4IQsQ0NVG15BzhSm1/LFP84hy/3fo3VSceMj07vrfzu5aYmY4cP5o+XMuzkSlVo5SrMXBEEQ7IUIkO2EVqey6Qpyc10HO15Jw9VHx4rvxKEYoJ7sSKgdHPAOCSPj4Nc0VVcyb8PGAXOPL6fSaIiYOZvcU8dY/t2HUShEQDIcsXP9yT1VadVPBMaryytZKFUKdr6ajmeQM7c9PhOVpu+fKwl61VeetiSQvDNV5J2pJnZu3y3UBUEQhGuXyEG2ExqdCn27beqvGvQmtr+UislgZu3D8d2NSawtICaWpupKdC6uzLrxtmHdO2nuAtoaGyg7n2mTuV3LwqZ5cf+zi/AJtU4++Xjm7usIElReaOLLF1NQKCTWPhSPxkGFQiH1+dVX85GgWA/c/RxJPyA26wmCIExEIkC2E1qdis723p3orOHk5xeoLm5mxXfibFoCLOBiHvK8DRvROjoO696IxFmo1BqyTxy2xdSuedaoRHItUGmUuHrrOLe3mIaqdlY/OG1EXQUlSWLqokDK8xqpLW2xwUwFQRAEeyZSLOyExlFFW6NtmmWUnK8naJIH4fHeNhm/S+yCxZhNJuKuWz7sezUOOsKmzyTnxFGWfusBJIV47yaMjKe/I03V7Sy6M5qg2KGl+fRl8nx/jn+az6d/SUbrqAYsqRhLNk4i+CrGFQRBEOyfiELshMZBZZNNeiaDmdrSFvzCbf/xu1qjJWH5KpSqkb3vmjR3AS21NVTk5Vh5ZsJEMv2GUBZsiCb++uCrGkfnrGHxXTEExXrgHeKMd4gzbY2dpH1dYqWZCoIgCPZKrCDbCa1Ohd4GjUJqy1owm2R8Ql2tPra1RSbNQaFUkX38cHf7akEYruBYD6ut8MYtDiJu8aVShfvfzeL80XIMehPqfjb9CYIgCOOfWEG2ExpHSxULeaB6VCNQVdgMgG+Y/W/gcnByJjR+Ojknjlj9+yAI1hCV6INRb6YovXaspyIIgiDYkAiQ7YRWp8JsljEazFYdt6qwCQcnNS5eDlYd11Zi5iygsbKC6sILw7qvvbn/RhCCYC2BMe44OKnJO1M91lMRBEEQbEgEyHaiu5ueldMsqgqb8Q1zGTcNJKJnz0OSFOQcH3o1i3O7tvPCd+8m5+RRG85MEEChVBAxw5vC1BpMVn4zKwiCINgPESDbia7axNbcqGfUm6gvax1X9XEdXd0InjqN7ONHhnR9SWYae197CYDjH70vUjMEm4tK9EXfYaL4fN1YT0UQBEGwEREg24nuFWQrBsg1pS2YzTK+Yfa/Qe9yMXMXUFdaTG1J8YDXNdVUse353+Hm68fiu++jMj+H4vTUUZqlMFEFx3qgcVCSlzz+0izaW/T894+nqClpHuupCIIg2DURINuJrgC5o9V6zUKqL27Q8xkHG/QuFzN7PsCAaRaGzg4+fe4ZTAY9Nz/+JDPXrMfRzZ2T2z4crWkKE5RSrSA8wZsL56oxmcZXmkVBSi0V+U0k7yqy6XNkWeb4Z/mc+apQpKIIgjAuiQDZTnj4O6LSKjl/tNxqY1YVNqFzUePsobXamKPB2dOLwElTyD52qM+UCVmW2fny36kqyGfto4/jFRyCSqNh5pr1FJw7Q1VB/hjMWphIohJ96Ww1UpbTMNZTofJCExmHyoaUXlScaUkLyTtdTXuLbRoTAZzdVcypLwo4+nEe7z1zgtKseps9SxAEwRZEgGwnHJzUJN4QQt6ZaiouNA56fcWFRlobOge8xrJBz3XcbNC7XNz1y6kuKuDUZx/1Onfqs484f3g/C+/8BlFJc7uPT1+xFrWDrs97BMGaQuI8UWkU5I9hNYuOVgNfv5PFh388xb7/nKeppn3A62WzTMn5OnxCXTAZzZw/WmGTeRWl13L041yiZvqy7vsJmIxmPvlzMrtfz0DfYf1a74IgCLYgGoXYkRkrQkk7UMrRj/K45ceJ/Qa2xZl1fPa3s7h4OXDHz2fj4KTudY2h00R9eSuRiT62nrZNxC9bRWHqOQ688zreoeFEzEgCoODsaQ6+8waT5i1i7q139rjHwdmZhOWrOLN9Gwvv+iZuvn5jMXVhAlBrlIRN8yL/bDUxs0f/56yhqo1jn+TR0WIgOsmX3FNVlOc14ubj2O89NaUttDcbWHBbNBmHykg/WMqMG0J6/J4x6k0Y9WYcnHv/ThnSvCrb2PmvdDwDnVl+7xTUWiVBsR6c/rKA0zsK8Qp0JnFl6IjGFgRBGE0iQLYjGgcVs9dFcGBrNkXpdYRN8+p1TWN1O1+9moaLt46W+g52vprGjY9MR6Hs+WFATXEzsgy+46iCxeUkSWL1Qz+gvqyEL/76R+5+5nkkCT7/2x/xDgll9cM/7PMNRNK6W0je8Rmnv/yEZfd9bwxmLkwU0Ul+5J2p5uM/nRmT5/uGu3LTozPwCnamKL2O8rxGJs8L6Pf6rvSK4MmeSAqJ3a9lUJpVT/BkTwD0HUY+evY0nW1G7v71PNTa4XUK1Lcb+fLFFCRJYu3D8d33qzVK5t0SRe6ZKspyG0SALAjCuCACZDszdVEgZ/cUc/TjXEKmeqJQXAoC9R2WP0DIsP6x6ZRmN7DvrfMc/TiPhbfH9Binqqirg974qmBxObWDAzc//kve/sWP+PTZp0CSkBRKbv7JL1E79N34xMXLmymLrid1704Wb7y33+sE4WpFzfThtsdnYjSO/iY0lUqBX6Rb9+8H/0hXKvIGTs0qyazDI8AJZw8tUTN9OPi+irQDZQRP9kSWZfa+kUldWSuyDOf2FjNrTfiQ56PvMPLlSyk0VLWz/rHpuHrrel0TEOVGQUotsiyPy7QvQRAmFhEg2xmlSsG8myPZ+Wo62ScquleEZLPMnjcyqS9v5aZHZ+Dm44ibjyM1xS2c3V2Md7AzsZetHlUXNuPopsHJfXxt0LuSm68fN/3oZ3zw9C8BuP2Jp3Hz9R/wnskLryN9/x5KMtOISJxltbmUZmVy4O3XmDR3AUnrbrHauML4JEkSAdHuYz0NwBJ8Ht92gY5WQ58pV0aDibLcRuIWBwKgUiuZPD+A1L0ltDXpyThUSl5yNQtvj6Ysp4HkrwqJWxyIzlkz6LPbW/R8/vdzVBe3sPzeKd0r0r3mGO3O+aMVNFS24eHvdHUvWBAEwcZEgGyHomf6khxaxKH3c8g4VAZYcopriltYeHs0IVMv/QFaeEc0dWUt7PtPFgqVgugkXyRJoqqwaVyvHl8uJC6Bmx//JSATOi1h0OuDpsShVKspTE22SoDc3tLMwXdeJ3XPV0iSgqoLecTOX4yzZ+8UmKGqzM/lxLb/krR2PYGTplz1HIWJLSDKEqhX5DcSHu/d63x5biMmg5mQKZd+d8QtCuTc7mL2vJ5BUUYdk+b6MX15CKFxXmz9zXFOf1nIojtjeo11uea6Dj7721maajtY81A8EQm9n31pjm6WueQ1igBZEAS7JwJkOyQpJJZ+czLHPsnHZDQBoHVUMXtdONOXh/S4VqlUsOqBaXz293PsfDWd80fKmXdrFPWVbWOyechWopLmDPlatUZL0OQ4ClPOXvVzC86e5st//ImO1hZm3XQbUxcv5T8//xFHP3yXFQ8+MuzxOtvaOPz+W5zd8QWybKYkI5V7fvtnXL3H52ZKwT74RriiUEiU5/UdIBdn1qFQSgTGXFrx9vB3IijWg6KMOnzDXFh6z2QkScIzwIkpCwJI3V9CwrLg7nSJ1oZOzu0ppvOyShRFabXo242sf2w6gTEeA87R3c8RByc15XmNTF0YaKVXLgiCYBsiQLZTPiEu3PTo9CFdq3PRcPtPk0jdX8rxbfm8/9uTIDOuWkxbW1j8DA6+8zot9XU4e/T9ke9gZLOZ3f9+EQcXV+548hl8wiIAmL5iDWd3fsHMdTfjFRQyyCiX5J48xu5/vUBrQz0zVq5lyqKl/Pe3v+LT555m45Y/oNaKfGlhZNQaJd4hzv3mIRdn1uEf6YbGoeev/NnrwjGbzKz4dhwqzaVNebNvjCTrRCXHt+Wz/L6ppO0v4din+ZgM5h4pHA7OatY+nDCk3zWSJOEf5TZorrQgCII9EAHyNUKhVDB9WQhRib4c+iCHspx6/CPcxnpaYyYsIZGD77xOUepZpi5ZNqIxClPP0lhZwdrHftIdHAPM27CR9P27OfTum9z8+BPdx40GA7XFhfhGRPXahHRm+zb2vf4KPuGR3Pz4EwRExwKw9tHH+eTZp9j58t9Z++jjYvOSMGIBUe6kHSzFZDSjVF2qatPerKemuIW56yN73RM0yYPbHk/qddzZQ8v0ZSGc+aqQ2tIWaktbCZnqyZKNk3D37b+U3OBzdKMgpYb2Zj06l8HzmwVBEMaKaBRyjXH20LL6wWl8+9nFI65lei3wDYtA5+pGQUryiMdI2b0DnYsrMXMW9Dju6OrGrJtuI/fkUcqyMwFLMP3mTx7hPz//IR//YQuNVZYmDLIsc/j9t9n3+itEz57H3U891x0cgyV1ZNFd3+T84f2c+vzjEc9VEAKi3TAZzFQXN/c4XnLe0sXu8vzjoZi5KhSdi5r2ZgMrvxvHTY9Ov6rgGHrmIQuCINgzsYIsXJMkhYLQadMpSj07orJSLXW15J46RtK6W1Cpe7/RSFp3C2e/+oKv33wVd78AMg99jbtfAHNuuYPkHZ/z+o//h3kbNtJSX8fZrz5n2tIVrHjgERTK3rVl59xyB1UF+Rx8+3VCp03HLyJqpC9bmMD8u4LP3MYenx4VZdahdVThEza8lCuto5qNT85FrVUOuyZyf3zCXFCoLLnSkTNE3r0gCPZLrCAL16ywhBm0NtRTU1w47HtT9+1ENptJuGF1n+c1Djrm33435TlZZB87xLwNm/jWc/9g8aZ7uf/5F4mYOYtDW9/k7FefM+um21j5vcf6DI7Bkpu58nuPonV25uA7rw97roIA4OSmxdXboUeOb2ebgcK0WoJjPXrUVB8qR1eN1YJjsJSX8w11pSKvwWpjCoIg2IJYQRauWWHxiQAUpiTjExo+5PvMZhOpe3YSlpCIh3//u+3jl63EbDISPn0mnoHB3cddvLxZ/+NfUHD2NG1NjUxZvHTQFWytoxPzbr2Lr9/8PwpSkglPSBzyfAWhS0C0O0XplmYcsgw7/5VOZ6uBGSvsp3tdQJQb5/YWY9SbemwMFARBsCdjsoIsSdIdkiSlS5JkliRp1hXnfi5JUq4kSVmSJK267Pjqi8dyJUn62WXHIyRJOn7x+HuSJImdHwIArt4+eAQGU5g6vHJvF5JP01xb3e/qcRelSsXMNet7BMeXC5+RxNQly4ac3jF95VpcfXw5+M7ryObR784mjH8BUW60NxtorG7n2Cd5FKXXsWTjJPwj7WfDbkC0G2aTTFVh8+AXC4IgjJGxSrFIA24DDlx+UJKkqcBGIA5YDbwgSZJSkiQl8E9gDTAV2HTxWoA/AH+WZTkaqAe+MzovQRgPwuJnUJKRhtFgGPI9Kbu34+TuQVTSXBvOrDeVWs3Cu75J1YU8so4eHNVnC9eGrjzkwx/mkryziLglQcQtDhrjWfXUnSt9WZpFdXEzxZl1YzUlQRCEXsYkQJZlOVOW5aw+Tt0MbJVluVOW5QtALjDn4leuLMv5sizrga3AzZJlaW4Z8OHF+98ARA9goVv49ESM+k7KsjKGdH1TdRX5yaeIX7YSpWr0M5CmLLwOn7AIDr33Fibj0IN6QQDw9HdC66iiIKWGgGg3Fg/SCW8s6Jw1uPs5UpHXSGe7kQNbs3n/tyf5/B/n6GwTP/OCINgHe9ukFwQUX/bvJReP9XfcC2iQZdl4xfFeqqurmTVrVvfXK6+8YvXJC/YnZGo8CqWSwiGWe0vd+xUA8ctWDXKlbUgKBUvuvo/GygrO7doxJnMQxi9JIRE82QNnTy2rH4zvUQ/ZngREuVGa3cA7m4+Rur+EiARvzCaZgpSaPq9va9JTX9Ha/dVS3znKMxYE23vllVe6YxSg/77twqiw2RKZJEm7Af8+Tj0hy/Kntnpuf3x8fDh16tRoP1YYYxqdI4GTppC+fw9TlyzHK7j/zncmo5HUvTuJTJyFq4/vKM6yp7DpMwmJ41qOaAAAIABJREFUS+Dkpx+QuPpG0TxEGJbl901FNslodPa7BztokjuZR8px93Nk3fcT8Alx4Y1fHCEvuZrYeQE9rm1t7OQ/vzyK0dAzL//OX8ye0N1ChWvPgw8+yIMPPgiAJEl9v1sURo3NfoPKsnzDCG4rBS6PYIIvHqOf47WAuyRJqouryJdfLwgALPv2Q3z49C/Z+uufsuFnv8Y/elKf1+WfPkFrQz0JN6wZ5Rn2JEkSsfMXsfvVF2iqrsTNt6/3mcJwmc0mUnbt4PAHb9PRcmmDmKOrG7f+76/6/bkYb9TjoDJEzBx/XLwc8I9y7y4/F5noQ8ahMvQdxh4tsTMPl2M0mLn+nljUDkpkk8zeN8+Tc7JSBMiCINiMvS0xbAPekSTpeSAQiAFOABIQI0lSBJYAeCNwtyzLsiRJ+4DbseQl3wuM+uq0YN98QsPZ+Js/8uHTT/L+U09w8+NPEBY/o9d153Zvx8XLh4jE3q13R5v/xW57ZTlZIkC2gsr8XHa/+k8q8nIInZZAYOzU7nPp+/fw6Z+e4Ru/+wtO7h5jOMuJQ6GQCIzp+b2OSvQhdV8JRel1RCdZPsExm2XSD5USPNmjx2bD7BOV5CVXMf+23m3dhbFx8osL5Jyq6v53hQJmrY3o/m8pCOPNmATIkiTdCvwd8AG+kCTprCzLq2RZTpck6X0gAzAC35dl2XTxnkeArwAl8G9ZltMvDvdTYKskSU8DycC/RvnlCOOAh38gm37zRz585kk+/v2vWf/4E0Qmzu4+X19RRmFKMgvuvAeFYuxX4HxCw1FptFTkZDFl4XVWG1c2mzn8/tvELlg8rNrQ40lBSjIpu7d3/7tRr6fg7Bl0rq6sfewnTF6wpEdQFTNnAe8++RO2Pf877vzVMyhVE7dF+1gKiHZH56ImL7mqO6gqSq+lpa6ThRt6bjaMTPTh67ezqClpwSdErCKPNVmWSdtfilqrxDvEGYC68jZ2v5aBi6cDfhGuYzxDQRi+sapi8bEsy8GyLGtlWfaTZXnVZeeekWU5SpblWFmWt192/EtZliddPPfMZcfzZVmeI8tytCzLd8iyLHZvCH1y9vTiri1/wCskjM//8kdqS4q6z6Xu+QpJoSB+6coxnOElCqUSv8goynP7KvYycuePHOD4x++R/vUuq45rT5K3b+NC8mnqSkuoKy2hqbqK6SvXcv+fX2LKwut6rTj6hkey6uEfUJaVwd5/vzxGsxYUComIGT4UptZiNJgASD9Yhs5VQ8T0nvuVImf4IEmQn1w9FlMVrtDaoKetSU/CshBWPxjP6gfjufX/JeLopmH7Sym0Noo/y8L4Y59bnAXBRnTOLtzykydRa7V88uxTdLS0YDQYSNu3i6ikuTh7eo31FLsFxEym6kLesGo4D8RoMHBo61sA1JYUD3L1+FVbWkxk0hzu+9ML3V/Lv/0QDk7O/d4zecES5txyByl7dnDw3TfIPLy/+6upRgRhoyVqhg+GThPFGXU013VQmFrD1AUBvapx6Fw0BMa4kycC5F7qyltHPSCtKmwCwDfs0mq+zlnD2ocT6Gw3suPlVEwG0fxIGF9EgCxMOC5e3qz/f0/QVF3N53/9A9nHDtHe3MT0FWO7Oe9KAdGTMBmNVBfmW2W8lF1fWjb9+flTW3ptBsgGfSeNVZV4BfVfraQ/C+/6BpFJczjxyQd8+bdnu7/2vvaSDWYq9CUo1gOto4q85GoyDpchA1MX9d3uPTLRl/pyS9k3wcJoMPHxc2fY9a/0wS+2ouqiZiSFhFdwzzeh3sHOLL93KhX5TezfmoUsy6M6L0G4Gva2SU8QRkVQ7BSWf+chdr3yD0rPZ+Dm59/nxr2x1LVRrzwnm4CL/zxSnW2tHP3oPULjZxAyNZ7D772FvqMdjYPOGlO1G/VlpSDLA5bz649CoeSWx39JfUU5YPlDvv8//6amqMC6kxT6pVQpCE/wpiClBpVaQehUL1y9+/4ZjZzhw8H3ssk7U82stU6jPFP7lHemmo5WA6XZDdRXtOLhPzrfl6rCJjwDnPqsoBKd5EtNcRindxQyZUEgAVH20/ZcEAYiVpCFCSth+Wqmr1yHUd9JwvLVSAr7+t/BxcsbZw9PKqyQh3zqs4/oaG5iyd33da+u1pWWXPW49qZrZdxzBCvIYGnU4hkYhGdgMJ6BwfhHxtBYXYWhs8Oa0xQGEJXoQ2ebkdZGPdOW9L16DODsocU/0pW85Kp+r5lo0g+U4uypRaGUSD9QNirPlGWZqsLmHukVV4pfGgxcSsUQhPHAviICQRhlS+99gBt/+FNmrlk/1lPpRZIk/KNjKc+5ugC5pb6OU198QuyCJfhFRuMZ3BUgX3tpFnUlRUiSAo+APhtqDptXcAjIMnVlorz6aAmZ6olaq8TJXUvYtIH3BEQm+lJT3EJjdXuf58ty6vnoudNkHSu3xVTtSm1pC+V5jSRcH0Jkog/nj5Vj1Jts/tyW+k46WgwDBsiOrhp0LmpqS1tsPh9BsBYRIAsTmlKlInb+YlQazVhPpU8BMbE0VJbT1tQ44jGOffQeZqOJRRu/BYC7XwAKpbJHFY9rRW1pMe7+/qjU1inV1rUSXXcNfq/slUqt5Lq7Y1n6jckolAP/iYpK9AF6V7Nob9az540MPv5TMpX5Tex96zzluQ02m7M9SD9YhkIlMXmBP3GLg+hsM5J7xvar612rwj6h/ZdykyQJryBnaktEgCyMHyIHWRDsWECMJfe4Ii+7R93moZJlmZzjh5k0byHufpaGI0qVCo+AIGqvxRSLkmI8g0KtNp5HQCCSQnFNfq/sWezcoTXHcfXW4RPqQtrBUtqaLJUbzCaZrBMVGNpNzFwdRvx1wXzy/Bm2v5LGnT+fhbOHgy2nPiYMnSayjpUTPdMXnbOGoElq3P0cST9QyuQrWndbW1VhMwqFhFfwwPnOXkHOpB8oxWyWu7snCoI9EyvIgmDH/CKjkSTFiNMsGirLaWtsIGRqfI/jnkHB1JVeW6uiJqORhooyvIKCrTamUqXG3T/wmlxtv1ZMWxJEe7OetINlpB0sI+NIOd7BLtz5y9nMvyUKZw8tax6Ox9hpYvtLqaOSdjDack5Vou8wdXcblCSJuMWBVOQ3UWPjVdvqwiY8g5xQqQdusOQV5IzRYKapn3QYQbA3YgVZEOyYxkGHd0joiAPksqxMAAJjp/Q47hUcSu6JYxgNBqulI4y1hopyzCYTXsHWW0EG8AoKuSbzta8VUxcF9lsKrotXoDM33D+V7S+l8vXbWSy/b8o11aI6/UApHgFOBERfqhAxeX4Axz7JJ/1gKddturoqOP3p2qAXNXPwdtLeF0vA1ZS04O7naJP5CII1iRVkQbBzATGTqcjLRjZfKrQ/1HqipefT0To59aoL7BkUgiybqS+/djaf1V1lBYv+eAWHUF9RhslonYYtwtiInOHD7HXhZB2vsEk+sizLdLQaRv2rLKeBqsJmpi0J7BH0OzipiU7yJet4BfoOo9VfL0BzbQedbcYBN+h18QhwRFJIYqOeMG6IFWRBsHP+MZNI2bOD+ooy3Hz9OPX5Jxz/+H1WPPB9piy6fsB7S7MyCZw0pVcJu0ul3orxCQ230cxHV1cahKcVUyzA8r2SzWYaKsqtvjotjK6EZSGc/KKA8rxGAmM8rDauyWTmyxdSKEqvs9qYw6FSK/rM245bEkTW8Qp2/SudJZticfG0bv51VWEzAD6hgwfIKrUSdz9Hm6d8CIK1iABZEOxcV5OQ5B2fU5yeQm1JEUqVitS9OwcMkNtbmqkrLWbq4qW9znkEBoEkXVO5tbWlxbh4+1i9+UnXinRtabEIkMc5ByfL5rWKfOvW4z38YS5F6XUkrgjFyV1r1bGHwivICa1j71Qp/0hXFmyI5sS2fN7dcpw5N0WQsDR40OogQ1VV2IRCJeEV2H8b98t5BzlRcUHUQhbGBxEgC4Kd8wwKRqPTcfarz3H18eWW/32S8pxsTnzyAW1NjTi69t2Zqiv/OCh2aq9zao0Wd1//a6o6Q11pyYhaTA/GMyj40puJuQutPr4wuvzCXSnKrEOWZavkIWccLiN1XwnTbwhhwYZoK8zQeiRJInFFKFGJPhzYms3hD3PJPlHJrY/P7LPr3XBVFTbjHeSMUj20gNsr2JmcU1V0thvR6kT4Idg3kYMsCHZOoVAy//a7mbdhI/c99wJRSXOJmbsAWTaTe/JYv/eVZmWgUKrwi47p87xnUPA1U99XNpupKysZUYvpwai1Drh6+16TnQcnIr8IV9qb9DTXXX13xIr8Rva/m0XIFA8W3BplhdnZhqu3jnXfT2DJxklUFzVTkTfyuupdZLNMdVEzPmH91z++kleQZaW5TuQhC+OACJAFYRyYdeOtLLzzG6gdLDmEvuGRuPn6kXviSL/3lGVl4BcRhVrT90e+XsGh1JeXYjaN/7JXTTVVGPWdVt+g18UrOOSaSkeZyPwiLAFd5VV+1N/a0Mn2l1Nxdtey8rvTrJa2YCuSJBE9y1Jtwhob5Rqr29G3D22DXpeuAFls1BPGA/v+P1oQhD5JkkTM3IUUpp6jo7X3HxujwUBFXg6Bk3unV3TxDAqx1A6urLDlVEdFbYmlgoWXFZuEXM4zKIT6slLM5vH/ZmKi8wq2pARcTYBsNJjY/nIq+g4Tax9OwMFpfJRK1DlrcHLTWGWjXHWRZYPecAJkZw8tWkcVNaWtV/18QbA1ESALwjgVM2cBZpOR/DMne52rupCLyWAg6Ir6x5frSke4vMavLMsY9XrrTxZL0D7U8nTDVdtV4s0GKRZg+V4ZDXqaqmzfulewLaVSgU+Iy4gDZFmW2f9OFpUXmlhx39TuVdHxwivY+apXcE0mM+kHS1FrlXgEDNxB73Ki5bQwnogAWRDGqYDoSTh7epFz/HCvc6XnMwAInNR/gOwZeLE6w8XUAVmW2fOvF3nl+/djNFi35m9TdRWvPvJtjn74jlXH7VJbUoSjmzs656GvZg2H12WVLITxzy/SleriZkxG8+AXXyFlXwnnj1Ywa104kYk+NpidbXkFOVNX3orJNPzX3uXIh7mUZjewZNMklMNMLfEKcqa2rAXZbJs3y4JgLRN6G6nBYKCkpISOjqvfrDHROTg4EBwcjPoa6co2HkgKBTFzFpC65yv0He09ypuVZmXi7h+Ak3v/tV61jo44e3l3ryCf27Wdc7u+BCwVMEKnJVhlnoaODj557mlaG+rJPXGUBXfcY5VxL1dXWmyTChZduku9lRQRlTTHZs8RRodfuCvndhdTW9qC7zA2mRWfr+Pwh7lETPdmzroIG87QdryCnDEbZRoq24Zcnu1ymUfKSNlXwvTlIUyeFzCC5zth6DDRVNuBm491SzIKgjVN6AC5pKQEFxcXwsPDr6m2o6NNlmVqa2spKSkhImJ8/tEYr2LmLiB5x2dcSD5N7PxFgOW/R1l2JpGJswe93ysohNrSYv5/e3ceV2WVP3D8c7js+6aIgIC7KIhJmbmGjpmRVmOh1aTZ9BuK1sGaambKHGuqkZpKCq0pdXKhZUzFtEw0NTVXBBQVRVAUF1BRFIQLz++Pe0E2FfTCZfm+Xy9fXM5znnPP8/RAX879nnNy9qaxdu5s/EP6cXRPCtkpO00SIGuaxo/xH3I6+zABfW8ha/dOLp47e83AvaaCUyfZuHg+BVVypS0sdYSMGE0v4xrP+TlHK183BlsHRxzc3GUli1ai6kS9+gbIR/bks/qLvbh62TPy8SCURcv8f0bFls/5xwobHCCfyCxg3cL9+PZ0444HbmzVDo8q7y8BsmjO2nSKRXFxMR4eHhIc3ySlFB4eHjISbwY+PYOwc3aplmZxNvc4RecL6HiN/OMKHj5+5OccZdkH/8TFy5t7X3wF7249yE5NNkn/ti79lv2bNzBk4iQGT3gMoN5tl+n1bF36LXNjnubQ9t+wtrfHxsEBGwcHLl+8yMq49/lm+msc3ZNCSdElPEy8g15Nhj8mZCWL1sDJ3RZ7Z+t65SFfPHeZHz9PY/nHu7F1tGLMU8FY27bcsSVXL3ssdIr8nIZNlDufX1S5asddN7Fqh7u3AyhZyUI0fy33p9xEJDg2DbmP5mFhoaPrrbez79f1bF36LQB5R7KAujcIqcndxw99yWUsdDrue+lv2Ng74B/cj03fLqTownnsnOr/8fPFc2fZ9+svlOn1AFy+dJGtS7+lxx1DuXXs70HTsHVyJjtlV527+1V1KiuTHz6eSX7OEbreejt3Tv4Tzp5X8j218nJSk35i/cIv+eYff628lsbk7uPH3vVrTLbBhDAfpRRegc6cOHzt9YD3bjzOr99mUKbXuO3eQG4Z5V/vTTGaK52lBW4dHBoUoJ7Jvcjyj5LRl5Qz9rlQbB1vPJXO2tYSF087magnmr02HyAL0dIFDQ0nbe1qNiycW1nm5t0R944+1z3Xp0cvbOwdGPPsVNw7GkZg/UNC2fTNAo6k7abHwCH16kNpcTHfvf06p7MPVyvv2L0Xd0U9ZwgolaJTn75kpyZfM8jUNI1Vn/6b4sILjHvp73QNG1CrjrKwIGTkaLqEDeCXr77gaNpu2gc27kYNHr6dKCkqovBMPk4eno36XqLxeQU6c3h3HsUXS+tcpu1U9nnWfrUPn+6uDH+kJ65e9mboZePw8HXg+IFz9ap7Mus8iR/vRukU98fcYpJVOzx9HU2y1JwQjUkCZDPT6XQEBwejaRo6nY5Zs2Zxxx13XPMcR0dHCgsLycrKYtOmTTz88MMAzJ07l+3btzNr1qym6LpoJnx79ua5+d+hVVmjV2dlhbK4/kiXZ6cAor9YXC1Y7dClOzb2DmSn7KpXgFyZZ3wki/te/jud+vStPGZpbVOtbf/gUA5s3kB+zhE8/fzrbO/EoQOczspkxBNP1xkcV+Xg6saYZ2Ku20dTqEjhyD92tM4Auby8jLLSUqxsbJukP+LmeAUatmg/mXUe/94etY5vXnIIWwcr7n4qpNVti+zp48SB305e9Y+DCjn7zvDDp6nYOVkx9vlQXNqZ5o8Er84uHNp1mlVzUhn8YHcc3erezEgIc2rZnxW1AnZ2diQnJ7N7927++c9/8uqrr9b73KysLBYubJxls65Hb/wYXTQPllZWWNnYVv6zsNDV+9yaI7kWOh1+vYMrR3qvp2qecZf+A6r1o2bbASH9AMhOuXoe8u7VK7GysaXX4OH1voam4OFr2ITk1OFDdR7f8l0CX774VKOt9SxMq72/E6i6d9Q7uvcMOfvOEjYmoNUFx2AYQQaumeZw8vB5Emel4ORhywNT+5ssOAYIudOXAWM7k5Waz8JpW9i95ijlN7HsnBCNofX95N+gN5fvYe/xm9t6tKagjs68cW/vetc/f/48bm6G2f2FhYWMGzeOs2fPUlpayowZMxg3bly1+q+88grp6emEhoYyadIk3NzcOH78OKNHj+bQoUPcf//9vPfeewA89dRTbNu2jaKiIsaPH8+bb75Z2cayZcuwtLRk1KhRzJw5k+XLlzNjxgxKSkrw8PBgwYIFeHl5MW3aNA4dOkRmZiadOnVi0aJFJrpTornxD+7HwW1bOJt7/JqpGpk7t7Fx8fwrecbX4dyuPW7eHclO3UX/e8bVOl58sZD9mzbQa8hwbOyb10fa9i6utPMP5NCOrdw2bny1Y5qmsXf9Gi7kn6ak6BI29vXfPEGYh7WtJe7eDpyskYeslWtsWnIQJw9b+gy9fppSS1SRJpF3rBCfHrVXlLlYcJmV8SnYu1hz35/7YedobdL311laEDYmgG63tmf94gNs/CaDYwfOMuYp0ywtKYQpSIBsZkVFRYSGhlJcXExubi5JSUmAYV3hJUuW4OzsTF5eHrfffjtjx46tNiL3zjvvMHPmTBITEwFDikVycjK7du3CxsaGHj168Oyzz+Ln58dbb72Fu7s7ZWVljBgxgpSUFHx8fFiyZAn79u1DKcW5c4actMGDB7NlyxaUUnz++ee89957xMbGArB37142btyInZ0sz9Oa+fc1jvSm7qozQNY0jYPbNrPqk3/Tzj/wSp5xfdoO6ceedWso05eis6z+8e7e9WvRl1ym78i7b/4iGkG3AXew6ZuFFJ49g6Obe2X5qaxMCk6dBOBCfp4EyC1Eh0BnDu44xekjF2jXybDJTMb2k+QdLWTk40EtfkLe1dg7W2PnZFXnRL2y0nJWzU7lcpGe378cZvLguCqXdvZEPNOX7T9ksXX5YY7uPYNfkPv1TxSiCUiAbNSQkV5TqkixANi8eTOPPfYYaWlpaJrGa6+9xvr167GwsODYsWOcPHmSDh06XLO9ESNG4OJiyK0LCgoiOzsbPz8/vv76a+bMmYNeryc3N5e9e/cSFBSEra0tTzzxBBEREURERACG9aEjIyPJzc2lpKSk2trGY8eOleC4DXD18sa5nRfZKcn0uyui2rGCUydJ+jKezJ3baNcpgPum/q1Bebf+wf1I/nEFxw/swy8ouLJc0zRSfl5Jhy7d8Orc1WTXYkrdBwxi09cLOLh1M6F33VNZnvHbpsrXhfl5V82vFs1L76E+HE7N55t/biN4uC9h9wSwZWkmnn6OdL/Vy9zdazRX2/JZ0zR+WbyfE5nnuevJPpVrJjd2X24Z5U/6r7lsWnKQh3re2mLXmBatS+v887iFGjhwIHl5eZw+fZoFCxZw+vRpduzYQXJyMl5eXvVaZ9jG5spkB51Oh16v5/Dhw8ycOZM1a9aQkpLCPffcQ3FxMZaWlmzdupXx48eTmJjI6NGjAXj22Wd55plnSE1NZfbs2dXe18FBRsbaAqUU/iGhHN2TQnmZYfJf1XWJj+5JZdgfnuDRdz7EuV37BrXt1zsYZWFRKw/52L495OccIaSZjh6DIQ/ZvaMvGVurb++d8duvuHoZdhW7cDbfHF0TN6C9vzOPTBtAn6E+pKzLYf6rm7iQX8zA+7u0+iDNw8eRM8cvUl5ly+e0X46R/msu/e/2p2v/hv1c3wydlQUDxnUm72ghGTtONtn7CnEtEiA3I/v27aOsrAwPDw8KCgpo3749VlZWrF27luzs7Fr1nZycuHDhwnXbPX/+PA4ODri4uHDy5ElWrlwJGPKcCwoKGDNmDB988AG7d+8GoKCgAB8fw8fq8+bNM+EVipbEP7gfJUWXyD14gJz0NP77l+fYsHAuAX1vYfL7nxIWcT8WuvpPBqxgY++Ad9ceZKfuqlae8vMqrO3s6XnHUFNdQqPoNmAQR/emcem8IXc1P+cIZ47nVI4oF+ZLgNyS2NhbMXRiD8b/JQwPX0e69GuHX6/W/zG/h48j+tJyzp8uAuDYgbNs/DqDgBBPBtzbucn70/1WLzx8HfltaSZlepmwJ8xPUizMrCIHGQwfb82bNw+dTscjjzzCvffeS3BwMGFhYfTs2bPWuSEhIeh0Ovr27cvkyZMrJ/jV1LdvX/r160fPnj3x8/Nj0KBBAFy4cIFx48ZRXFyMpmm8//77AEybNo0HH3wQNzc3wsPDOXz4cJ3titatU58QUIofP/2As7nHcW7Xnvte/jtd+l976bX68A8JZfN3i8nN2I+ljQ36y5c5sGUjwSNGY2XbvJdJ6zbgDn5bksCh7b8RHD6KA8ZdDHsMHMLWpd9y4UyemXsoboRXgDPj/xJm7m40mYr0ibycQiwsFavmpOHS3o7fmWkbbWWhGHh/FxI/3s2eDccIubNxN/4R4nokQDazsrKyOss9PT3ZvHlznccKCw15Y1ZWVpWT+ipMnjy58nXF5D0wTOCry9atW2uVjRs3rtaKGWAInEXbYefkjHe3Hpw8lMGt48Yz8IEJJgteA/r2Z/O3i1j4t+prGPcdOdok7Tem9gGdcWnvRcZvvxIcPoqMrZvp2L0Xju4eOLp7UHhGRpBF8+fmbY9ScPJwATtWZVFepjHmqRCszbisXacgd3x6uLFtRRbdb+uAta3xEyqlsGjlKS+i+ZEAWQhxVfe++Arlej0u7a89ObShvLv1YPxfZ3C56GJlmb2LK56dAkz6Po1BKUW3AYPY+cMyTmYe5HRWJsP+8AQATh6enD8lOZSi+bO00uHqZU/ymqMARDzT1+y7BSplGEX+9p3t/CdmQ2W5hU4RPMyX28YGYm0rYYtoGvKkCSGuysm9cbZUrpgE2FJ1u+0Oti//Hz/N+bjyewBHNw+O7dtrzq4JUW8evo6cPXGJgfd3qXM3QXPwCnBmzNMh5OdcmV9TcKqI3WuPcnDnKYZEdqNzaLt6LyspxI2SAFkIIRrIu2t3HN3cOXX4EF6du+LS3rAkmJOHJ8WFFygtuYyVtWyfK5q3vuF+tPNzot+oTubuSjWBIZ4EhlT/47z3UB/WLdzPqtlpBIR4MvLxoFa5y6FoPmQVCyGEaCBlYUFX46hxxegxgKO7YRRO8pBFS9Chswu33OXfIkZjO3R24aFXwxg0vitH0vL5/v2dXDpfYu5uiVZMAmQhhLgBfe78Ha5e3vQaPLyyrDJAzpeVLIQwNQudBaEjOzHm6RDOnbjEktidnM8vMne3RCslAbIQQtwAr8AuPPHRZ9U2SnHyMHwsLCPIQjQe/z4ejH0+lEvnS1gycydnci9e/yQhGkgCZDNTSvHoo49Wfq/X62nXrl3lts/Lli3jnXfeuer5WVlZ9OnTp85jr7/+Oj///LNpOyyEuKqKEeQLEiAL0ai8u7pyf8wtlOnLWTMv3dzdEa2QZLibmYODA2lpaRQVFWFnZ8fq1asrd7EDGDt2LGPHjr2htqdPn26qbgoh6sHa1g4bewcuSIqFEI3O09eRHrd7k7o2h/JyTdZKFiYlAXKFla/AiVTTttkhGO6++uhvhTFjxrBixQrGjx/PokWLmDhxIhs2GNaAnDt3Ltu3b2fWrFmcPHmSqKgoMjMzAfj000/p2LEjZWVlPPnkk2zatAkfHx+WLl2KnZ0dkydPJiIigvHjx5v2uoQQVyWbhQjRdNw62FOmL+fTkle6AAAgAElEQVR8XhGu7c27jrNoXSTFohmYMGECixcvpri4mJSUFAYMqHsr3+eee45hw4axe/dudu7cSe/evQHIyMggOjqaPXv24OrqynfffdeU3RdCVGEIkGUEWYim4O7tAMBZyUMWJiYjyBXqMdLbWEJCQsjKymLRokWMGTPmqvWSkpKYP38+ADqdDhcXF86ePUtgYCChoYZNF/r3709WVlZTdFsIUQcnD0/yjmabuxutVklxEbt/+oF+d4/F0srK3N0RZubWwTBqfPbEJQL7mrkzolWREeRmYuzYsUydOpWJEyc2+FwbmysbEuh0OvR6vSm7JoRoAEd3Ty6eO0uZ/Bw2igNbfmX9gi/J+O1Xc3dFNAM29lbYu1jLCLIwOQmQm4kpU6bwxhtvEBwcfNU6I0aM4NNPPwWgrKyMgoKCpuqeEKKenNw9QNO4eO6subvSKp3MzAAgY+smM/dENBfu3g6y1JswOQmQmwlfX1+ee+65a9b58MMPWbt2LcHBwfTv35+9e/c2Ue+EEPXl6FGxm57kITeGk4cOAnA4eQell4vN3BvRHLh1cODsiUtommburohWRHKQzaywsLBW2fDhwxk+fDgAkydPZvLkyQB4eXmxdOnSWvXT0tIqX0+dOrXy9dy5c03aVyHE9Tm5y2YhjaVMr+d09mHaB3bh1OFDZCXvpNuAO65/omjV3L3tKb1cRuHZyzi525q7O6KVkABZCCFMqHKzkHwJkE0tP+cI+tIS+t9zH2vnfcaB336VAFng1sG4ksWJi00WIO9OOsq2xMPVyoLv9GXAvZ2b5P1F45MUCyGEMCFbRycsrawpPCsBsqmdzDSkV3h37U7XsNvJ3LkNfWmpmXslzM2tcqm3S032nge2nsTG3pLuAzrQfUAHXL3s2fXTEYoulNSqe+7kJX78PI3Sy2VN1j9x8yRAFkIIE1JK4ejhIbvpNYKTmRnY2Dvg6uVN9wF3UFJ0iSOpyebuljAzOycrbBwsOXOiaSbqlZaUkXfkAl3DvBga2Z2hkd0ZMakXZfpyUtbm1Kq/4esMDm4/Rf7x2imVovmSAFkIIUxMNgtpHCcOHcSrcxeUhQWdgvtibWfPAVnurc1TSuHu7dBkS72dOnye8nIN7y4ulWVuHRwIDPEkdV0OJcVXlnjM2X+WI3sMnyYVF8qnHS2JBMhCCGFiTu6eMkmvAYounOdw8g4O79pe+e9Swblqdcr0peQdOYxX524A6Cyt6NL/Ng5t/03WnBaGlSyaKMUi95BhidUOnV2qld9ylz+XL+lJ35QLgKZpbP7fQaxsdAAUX5QAuSWRSXpCCGFijh6GAFkrL0dZyDjE1Wjl5aSt+5n1C76kuPBCtWO+vfoQOe3KDqd5R7Ip0+srA2SAbgPuIH3jOnL2puEfEnrT/SkvK6O8vFx26GuB3L0d2LvxOEUXSrBzsm7U98o9VIB7RwdsHao/Jx06u+Dd1YXkn4/QZ5gPh5PzOJV9gcEPdmPjNxkygtzCyG9uM1NK8eijj1Z+r9fradeuHREREQ1qZ/v27ZXrKK9bt45Nm2QRfSHMxdHNgzK9nqIL583dlWYr70gWi6e9wk+zP8LDtxPj/zaDh2fE8vCMWMLufYCc9LRqW3ZXTNDr0KVrZVlA31uwtLEhY+vNpVlomkbGb5v47JkpfD39VbTy8ptqTzS9ii2nG3vDEK1c40RmAR26uNR5/JZR/hSeucyB306yZekh3Ds6EDzcBwsLRZEEyC2KjCCbmYODA2lpaRQVFWFnZ8fq1avx8fFpUBt6vZ6wsDDCwsIAQ4Ds6OjIHXfI8kdCmIOTcbOQC2fysXdxNWnbeUez+d8/p1F0vmXvpKnXl2Lr6MRdT71A72EjUEpVHnPx6sCulctI+XkV4Y//CYATmRnYOjrh3M6rsp6VjS2dQ8M4sOVX7njoUeyd6w5arqXg1AmSvpxN5s5tOLp7kHtgH/u3bKTnHUNv/iJFk6lcyeLEJXy6uzXa+5zJvUhJkb5a/nFV/n08cO/owC+L9lNWWs490SFY6CywcbSSEeQWRgJko3e3vsu+M/tM2mZP95785ba/XLfemDFjWLFiBePHj2fRokVMnDiRDRs2AHDmzBmmTJlCZmYm9vb2zJkzh5CQEKZNm8ahQ4fIzMykU6dO/OlPf2LmzJnMmjWL+Ph4dDodX331FR9//DHPPvts5Xvt37+fVatWMWzYMJNeqxDiiiubheThFdjFpG2vX/AlJcWX6Hf3vSZtt6lZ29nT93d3Y+fkXOuYvbML3QYMYu/6JIY8PAkrG1tOHjqIV+eu1QJpgNvue5BDO7eS+O93+f1r09FZ1v9/awe3bWHFR/9CKcXwx/5I6F33sODVF/l18X/pdttAdJaSatFSOLrZYGWja/QR5Ir8Y+8udf/hqywU/X7XiTXz0unYzRX/PoY/lu0crSQHuYWRALkZmDBhAtOnTyciIoKUlBSmTJlSGSC/8cYb9OvXj++//56kpCQee+wxkpMNyxrt3buXjRs3Ymdnx7p16wAICAggKioKR0fHyl31KuovX76c9957T0aWhWhkN7tZyIEtGykrLaXXkDurlR/dk8LhXdsZ+sjj3Dr29zfdz+as78i72ffrL+zftIGeg4aRdzSLsHsfqFXPq3NXRv3fs6yMe59f/vufyhHn67l0voCfZn+Ee0dfxr30N5w92wEw5OHJ/O+daaSs+ZF+dzUs1U2Yj1IKtw72jb6SRe6hc9g7W+PsefUNSbrd6sWp7Av0Htqx8g86WwcZQW5pJEA2qs9Ib2MJCQkhKyuLRYsWMWbMmGrHNm7cyHfffQdAeHg4+fn5nD9vyGscO3YsdnZ29XqPjIwMXnrpJdauXYuVTEARolHZu7qiLCxuaCWL/JwjrPhoJuVleqxs7eh66+2AIU92/cK5OHp4Ejq69QduPr164+7jx+6fV+Lh14nysjI6VJmgV1XQ0HBOZWWyY8X3tAsIJPjOUddtf+3cOVy+dImHXn+xMjgGCAjtj19QMJu/XUTvoeFY2xlyW4sLCzm4bTO9hgyXkeVmys3bgZz0M436HrkHC/Du4lLrk4yqdJYWDJ3QvVqZraMVZ0803UYm4ubJJL1mYuzYsUydOpWJEyfW+xwHB4d61SssLOShhx7is88+w9vb+0a7KISoJwsLHQ5u7g1eC7m8vIwf4z/E2t6e9oFd+GFWLPk5RwDI+O1XThw8wKAHH8HK2qYxut2sKKXoO3I0Jw4eIHXNjwB4VZmgV9PQRx7HP6Qfaz7/hGP79l6z7UM7trLv118YcP9DeHYKqPW+Qx6ZTNH5ArYnLkHTNPZuWMsXL/6JH+M/JH3Dupu9NNFI3L0duFhQwuWixln27+K5y1zIL77qBL1rsXW0oriw9i57ovmSALmZmDJlCm+88QbBwcHVyocMGcKCBQsAw+Q7T09PnJ1r5+xV5eTkxIULV5ZMmjJlCo8//jhDhgwxfceFEHVy7+jLwW1bOLY/vd7nJK9KJDdjP+GTnuS+l/6OlY0N3//rH1w6X8DGxfPx8O1E0LDwRux18xI0dASWVtakJv2EnbMLTh7trlrXQqfjnudfxsmjHV9Pf42Ni/9LacnlWvUuX7rEz5/H4ennz4D7H6yzLe+uPeh++2C2L1/CN9NfY+WsWFzbd8DOyZls2bmv2apYyaKx0iyul398LXYOVhRf1KNpmqm7JRqJBMjNhK+vb+UybVVNmzaNHTt2EBISwiuvvMK8efOu29a9997LkiVLCA0N5ZdffuHbb7/liy++IDQ0lNDQULZv394YlyCEqOKuPz2HvYsL3771N7KSd1y3fsGpE2xYPJ/AfmH0HDwcJw9Pxv75Nc6fPs1/X36Ws7nHGfLwZCwsdE3Q++bB1tGRHsbVJDrUMUGvJjtHJyb+41/0vGMIvy1JYN7UaA7XuPcbFn7JxbNnGRX13DVTJQZP+ANl+lJOZWcy8o/RTPzHvwjoewvZqcmyDFwzdWUli8YKkM9haWWBZyfHBp9r62iFVq5R0kij28L0VFv5ayYsLEyrGRimp6fTq1cvM/Wo9ZH7KUR1F8+d5bt/vkH+0SPc/cyfr7p0mKZpfPf26xw/sI/JsZ9Uy4lNWbOK1XNm4dOzN5HT3rlukNjaHD+wj0V/n8rtv5/AoIcevf4JRkfSUvj5P59w9nhOrWP977mP4Y/98bptnMrKxNHNvXKpvj2/rGHVJx/wh3c/on1A5/pfhGgS5eUac57/hbLSG/8Dps8wH4ZO6F7nz9nXb2/D2lbHfX++pcHt7tuSy5q56Twy/XZc29tft75SaoemaWENfiNhMjJJTwghGomDqxuRb/yTJe9OZ8VH/0Kns6TbgNqryKRvWEt2yi5GPPF0teAYIGTEaGwdnejQpe7/abd23t16MOa5l/Dv07dB53XqE8Jj733MnnU/c/HclYlbtg6OBI8cXa82agbBnYINfchO2SUBcjNkYaH43ZQg8nMKb+j8c6eKSPvlGK7t7ek7wq/asZJiPXk5hdxyV6cbarti173iwlJof0NNiCYmAbIQQjQiG3sHfv/X6Sz++8usnf8Zgf3CsLS+shVuacllNiyeT4eu3el7lcCt+4BBTdXdZkcpRa9BN7Zuu6WVFX1/d7fJ+uLk7omHbyeyU5Nb/TJ7LVWXfu3p0u/GIlCtXENfUsav3x3E3ccBv57ulccyd51GK9duKP8YwM7R8DMvayG3HJKDLIQQjczK2oahjz7OhbzTJP+0otqxXSuXU5ifx9BHHkdZyK/k5s4/OJRj6XvQl8iKBK2NslCMfDwItw72/PhZGgWni7hYcJkfP09jzbx03Lwd6NjtxgJkW8cqI8iiRZDfxkII0QT8g0PxD+nHb0u+pvii4SPgosILbF36DZ1vuRW/oODrtCCaA/++/dCXllx3KTnRMlnbWnJ3VDBosOzDXSx8YwuHk/O47d5AHnotDCubG5skWxEgF0mA3GJIgCyEEE1kyMOTKS68wLZlhs1/tn7/DZcvXWLwxElm7pmoL79ewVjoLMlK2WnurohG4trenlF/7E3hmct4BToz4e+3ces9gVha3fgKMta2OiwslIwgtyCSgyyEEE3EK7ALvQYPZ+cPy+jSfwC7Vi2n99Bw2tXYrEI0X1a2tnTs0VPWQ27lOgV58ETsEKxsdSaZHKuUMmwWIjnILYaMIJuZUopHH72ydJFer6ddu3ZERBi2kp07dy7t2rUjNDSUoKAgPvvsM3N1VQhhAoMiH6W8rIxvZvwVgDseesTMPRIN5R/cj9NZmVwqOGfurohGZG1nadKVYwy76UmA3FJIgGxmDg4OpKWlUVRUBMDq1avx8fGpVicyMpLk5GTWrVvHa6+9xsmTJ83RVSGECbi070DoqDHoL1+m3+h7cfaUNZ9aGv+QUACy03abuSeiJbF1sKJItptuMSTFwujE229zOX2fSdu06dWTDq+9dt16Y8aMYcWKFYwfP55FixYxceJENmzYUKte+/bt6dKlC9nZ2Xh5eZm0r0KIpjPwwYexd3El9K57zN0VcQO8OnfF1sGR7JRdN7wEnWh77BytONNI22AL05MR5GZgwoQJLF68mOLiYlJSUhgwYECd9TIzM8nMzKRr165N3EMhhCnZOjgy4P6HsLF3MHdXxA2wsNDh1yfEsO10G9mNVtw8yUFuWWQE2ag+I72NJSQkhKysLBYtWsSYMWNqHU9ISGDjxo3Y2Ngwe/Zs3N3d62hFCCFEUwkIuYWM3zZx5ngOHj5+1z9BtHmGAFmPVq6hLNrerpgtjQTIzcTYsWOZOnUq69atIz8/v9qxyMhIZs2aZaaeCSGEqKkyDzklWQJkUS92jtZo5RqXi/SVW0+L5ktSLJqJKVOm8MYbbxAcLJsFCCFEc+fSvgOuXt5ky3rIop5sHQxjkrKSRcsgAXIz4evry3PPPWfubgghhKgn/5BQju5No0yvN3dXRAtg62gNIHnILYQEyGZWWFhYq2z48OEkJiYCMHnyZEmvEEKIZsg/uB+lxUXkZph2BSTROlVsNy0jyC2DBMhCCCHEDfDrE4JSFrKrnqgXO2OAXCQBcosgAbIQQghxA2wdHOnQtRvZKbvM3RXRAlRMzJMR5JZBAmQhhBDiBvmH9OPEwQyKL9ZOlxOiKitbHRY6JTnILYQEyEIIIcQN8g8ORdPKObonxdxdESaWdzSbMr3pglmllGEtZNluukWQAFkIIYS4Qd7demJla0d2iuQhtyZ7flnDvKnRzH/pWZP+8WPnaCU5yC2EBMhCCCHEDdJZWuIX1IfsVMlDbi1yD+5n9Wez6NC1O2X6Ur6e/hor497nUsG5m27b1kG2m24pJEBuBnJychg3bhzdunWjS5cuPP/885SUlLBu3ToiIiKue/7EiRMJCQnhgw8+aILeCiGEqMo/pB/nTuRScOqEubsibtLFc2dZFvs2Dq7u3P+XN5g0M44B9z/Evl/XM++lZyiuY2nWhjCkWEiA3BJIgGxmmqbxwAMPcN9995GRkcGBAwcoLCzkr3/9a73OP3HiBNu2bSMlJYUXX3yxkXsrhBCiJv/gfgCSZtHC6UtLWRb7NsUXC7nvpb9h7+yClY0tgyc8xv0v/51LBec4mp56U+9h62jN+dPprPniUzRNM1HPRWOwNHcHmosNXx8g76hpZyF7+jky5KHu16yTlJSEra0tjz/+OAA6nY4PPviAwMBA7rzzzsp6W7du5fnnn6e4uBg7Ozu+/PJLevTowahRozh27BihoaF8/PHHDBkyxKTXIIQQ4trcfXxx9PBke+ISju3fa+7uiBtUcOoExw+kE/HCK7TzD6x2zLd3CDorK47t20u3Wwfe8HvYOVpRVLCD5B+zCBoajnfXHjfbbdFIJEA2sz179tC/f/9qZc7OznTq1ImDBw9WlvXs2ZMNGzZgaWnJzz//zGuvvcZ3333HsmXLiIiIIDlZRi6EEMIclFL0uyuC3atXkpO+x9zdETdIKRj66BR6DBxc65illRVenbtx/Cb/ALKx11GuzwVg9+qVEiA3YxIgG11vpNfcCgoKmDRpEhkZGSilKC2VHCYhhGgubhs3ntvGjTd3N0Qj8unRix0rllJachkra5sbaqO0+DRol7FzdmX/pg0Mf+yP2Do4mrinwhQkB9nMgoKC2LFjR7Wy8+fPc+TIEbp27VpZ9ve//50777yTtLQ0li9fTnFxcVN3VQghhGizfHoGUV6m5+TBjBtu40J+JgBhEY+hL7nM3vVrTdU9YWISIJvZiBEjuHTpEvPnzwegrKyMmJgYJk+ejL29fWW9goICfHx8AJg7d645uiqEEEK0WR279wK4qTzzc7mHQDngGdCPDl26kfLzSpms10xJioWZKaVYsmQJTz/9NP/4xz8oLy9nzJgxvP3222zevLmy3ssvv8ykSZOYMWMG99xzjxl7LIQQQrQ9dk7OuHf05fiB9Btu4/SRA1hYduTyRT0hv7ubn+I/4tj+vfj27H3N82IjI8qAVAxxWzowCWgPJMYkJPapo/50YH1MQuLPsZER64CpMQmJ22MjI34AHo5JSLzpRZ1jIyPuA0JiEhKn13HsLeAxwC0mIdGxSrk/8AXQDjgDPBqTkJhjPDYJ+Jux6oyYhMR5xvL+wFzADvgBeD4mIbHaXxWxkREK+BAYA1wCJsckJO6MjYxoB/w3JiFxdEOvT0aQmwE/Pz+WL19ORkYGhw4d4uOPP8bGxobhw4eTmJgIwMCBAzlw4AC7du1ixowZZGVlARAQEEBaWpoZey+EEEK0DT49gzi+Px2tvLzB5144k0dh/mksLDtSXFhKz4FDsbF3IGX1yvqcXhSTkBhqDIZLgKhrVY5JSHw9JiHx5zrKx5giODZ6GfjkKseWA7fVUT4TmB+TkBgCTAf+CRAbGeEOvAEMMJ73RmxkhJvxnE+BJ4Fuxn91Bbt3Vzn+f8ZziElIPA3kxkZGDGroxckIshBCCCFEPXTsEURq0k/kHzuKp59/g849vt8w8qyz8aX4YglWtrb0GnInqWtWMXzSk9g7u9S3qQ1AiPG1LjYy4jPgDuAYMC4mIbEoNjJiLobR5W+rnhgbGZEFhAGOwCpgB3ALsAd4LCYh8ZKxztcYgs4iDCPOB2u00x24HJOQmFdXB2MSErcY69U8FAT82fh6LfC98fVdwOqYhMQzxvNWA6ONo9/OVdqbD9wH1PyrYhyGwFsDtsRGRrjGRkZ4xyQk5hrf4xHg17r6ejUygiyEEEIIUQ8+PQx5yBXBbl00TSM16adaW1Mf278XSxsbHFw6UmTcTa/vyNGU6fXsWVdrsLdOsZERlhgC14odS7oBcTEJib2Bc8DvG3A5PYBPYhISewHngaerHCuISUgMBmYB/67j3EHAzga8V4XdwAPG1/cDTrGRER6AD3C0Sr0cY5mP8XXN8pqudj7AdqDBm0RIgCyEEEIIUQ+uHTpi5+xyzYl6Wbt38tPsj0iaO6da+fH96Xh36Y6dk13ldtOenQLoFBzK5u8Wk3c0+1pvbRcbGZGMIdg7AvzHWH44JiGxYiOEHUBAAy7naExCYsWo6ldA1QWgF1X5WtfOKN7A6Qa8V4WpwLDYyIhdwDAMo95lN9BOQ5wCOjb0JEmxEEIIIYSoB6UUPj2Crhkgb1tqyGrYv2k9t977AF6du1JSXMSprExuG/cgebmWFF+8spfB3U+/yFevvsDSf83g4bffx87Rqa5mi2ISEkOrFhjTFy5XKSrDMJGtvmoun6HV43VlfwAXYz90GIJzgGUxCYmvX+0NYxISj2McQY6NjHAEfh+TkHguNjLiGDC8SlVfYB2GANq3RvmxOpo+BvhdpZ6tsb8NIiPIQgghhBD15NOjFwUnT3Dx3Nlax3IP7ufo3lQGjp+IrZMz6xd8iaZp5GbsRysvx6dHL2wdrCtHkAEc3T0YG/MaF/JPs+LD9ygva+wB1UqdYiMjKkaHHwY2VjkWWeXrZmpLB7oCxCQklhknEIZeKzgGiI2M8IyNjKiIPV/FsKIFwI/AqNjICDfj5LxRwI/GHOLzsZERtxtXqngMWFpH08uAx2IjI1RsZMTtGFJEco3HugMNXs1AAmQhhBBCiHrq2CMIqHs95G3LvsPGwYGwiPsZ+EAkR9J2k52yy5CzrBTe3Xti52TFxXOXKS+7shJGx+69GPHE02Sn7GL9wrlNdSn7gejYyIh0wA3jyg9GbrGRESnA88CLdZy7HuhnDFpriY2MeC82MiIHsI+NjMiJjYyYZjw0HNgfGxlxAPAC3gIwTs77B7DN+G96xYQ9DLnRnwMHgUMYJ+jFRkZExUZGVKzm8QOQaazzGdXzqe8EVlz3btSg2soC1WFhYdr27durlaWnp9OrVy8z9chAp9MRHByMXq+nV69ezJs3j1OnThEREVHn8m2vv/46Q4cOZeTIkQwfPpyZM2cSFhbGmDFjWLhwIa6urma4CoPmcD+FEEKIxlSmL2XW5Ej6jrqb4Y89WVl+5vgxvvxzFAPue5DBEx5DX1rK3D9HYW3vgJ2TM5cKzjHpX7PI3HWalbNTGfNUMIF921Vre80Xn5L84wqmfr1ih6ZpYY11DbGREQFcfQ3lLCDsaitUVKn3IbC8ruXkmpPYyIj1GFb3qD3kfw0ygmxmdnZ2JCcnk5aWhrW1NfHx8desP336dEaOHFmr/IcffjBrcCyEEEK0BTpLKzp07c7hXTu4dL6gsnxH4hJ0lpb0G30vAJZWVgyK/AOnszI5kppcuQKGf4gHDi7WpK0/Xqvt4Y89SfeBDV5wwVzeBuyvW8uMjBuFvN/Q4Bhkkl6ltXPncCo706RttvfvzJ2T/6/e9YcMGUJKSgpg2HL6ySefZNOmTfj4+LB06VLs7OyYPHkyERERjB8/vtq5AQEBbN++ncLCQkaPHk3//v3ZuXMnvXv3Zv78+djb2xMQEMBDDz3EypUrsbOzY+HChXTt2tWk1yyEEEK0diG/u5tVce/z5YtRDH30cQJDw9izfg29h43AwdWtsl7PO4ayffkSTmUdqkzN0Oks6DW4I9t/yOJ8XhHOnlfm1eksLbn3hb/Ai680av9jEhKzgFqjx8ZjAfVs4ySG3N9my7hRyPfXrVgHGUFuJvR6PStXriQ4OBiAjIwMoqOj2bNnD66urnz33Xf1bmv//v08/fTTpKen4+zszCefXNnoxsXFhdTUVJ555hleeOEFk1+HEEII0dr1GjSMP7z7ER6+fvwU/xHzX3qGMr2esIj7q9VTFhbcOelJ3Lx98A++sghF0KCOKGDPxtqjyGnr61qkQTQ1GUE2ashIrykVFRURGmr4oRkyZAhPPPEEx48fJzAwsLK8f//+lVtL14efnx+DBhl2VXz00Uf56KOPmDp1KgATJ06s/Prii3Xl3QshhBDiejz9/Il84x32/LKGXxZ8Sa/Bw3Hzrr2HhW9QH6b8e3a1Mid3W/yDPUnflMttEYHoLA3jlfs25/LLwv1N0n9xbRIgm1lFDnJNNjY2la91Oh1FRfVfwk8pddXvr/ZaCCGEEA2jLCzoc+fv6DXkzgb/P7X3kI5kpeRxeHceXfu358ThAtYt2I9PD7dadeOiknyBOAxbNVsAicBL0fHhJXFRScOBqdHx4bX2da7RxiKgN/BldHz4BzWOvQCciY4Pn1/HeV8AEcCp6PjwPlXK+wLxGLatzgIeiY4PPx8XlXQbULFLigKmRceHLzGeMxr4ENABn0fHh79Tx/vZAPOB/kA+EBkdH54VF5UUDMREx4dPvtZ1moqkWLRCR44cYfNmw7KFCxcuZPDgK5vjJCQkVH4dOLCuzXGEEEII0RA6S0ssdLoGndOptwdO7rakrT/GxYLLrIpPxcHVmtFPVk8NjotKUsD/gO+j48O7YVjX1xHjEmn1EReV1AG4NTo+PKSO4NgSmAIsvMrpc4HRdZR/DrwSHR8eDCwBXjKWpwFh0fHhocbzZsdFJVnGRSXpMAT5d2MI9CfGRTomQ7IAABCjSURBVCUF1dHuE8DZ6PjwrsAHwLsA0fHhqYBvXFRSp3pe9k2RALkV6tGjB3FxcfTq1YuzZ8/y1FNPVR47e/YsISEhfPjhh3zwwQfXaEUIIYQQjcXCQhE0pCPH9p9l2YfJXC7Sc3dUCLaOVjWrhgPF0fHhXwJEx4eXYVibeEpcVFK1VSTiopJui4tK2hwXlbQrLippU1xUUg/joZ8An7iopOS4qKSay2SEAzuj48P1dfUzOj58PXCmjkPdMayHDLAa+L2x/qUqbdlyZSe+24CD0fHhmdHx4SXAYmBcHe2OA+YZX38LjDD+kQCwHJhQVz9NTVIszKywsLBWWUBAQLU1kCvyhwHmzp1b+XrdunWVrytylAsLC7G0tOSrr76q8/1eeukl3n333ZvrtBBCCCFuWq87vNm2/DBnjl9k9P/1wdPXsa5qvbmylTMAxlSGIxh3s6tiHzAkOj5cHxeVNBLDUmy/B8YCicZR3ZoG1Wy/nvZgCGa/Bx6kylbPcVFJAzDskucP/MHYHx/gaJXzc4ABdbRbWc94XgHgAeQB24FXgPduoL8NYpYRZKXUv5RS+5RSKUqpJUop1yrHXlVKHVRK7VdK3VWlfLSx7KBS6pUq5YFKqd+M5QlKKeumvh4hhBBCiIZycLFh4ANdGPZwD7rc0t4UTboA38RFJaVhSE/oXY9zvIHTN/BeU4Cn46KSdgBOQEnFgej48N+i48N7A7cCr8ZFJdneQPt1OQV0NFFb12SuFIvVQB9N00KAAxj240YpFYRh6Lw3hryVT5RSOqVUrbwVY10w5KZ8oGlaV+AshtyVNqvm6HNVWVlZeHp6NnGPhBBCCHE1oSM70Wdo7dUvqtiLYcJapbioJGegE4atlav6B7DWOJnuXgwpDtdTVFEvLirJz5iGkRwXlRR1rZOi48P3RceHj4qOD+8PLMKwDXTNOulAIYY1l49RZZQZ8DWW1VRZz5gf7YJhsh7GftZ/1YKbYJYAWdO0nzRNq8hP2YLhJoFhqH6xpmmXNU07jOE//G3Gfwc1TcvUNK0yb0UZpoyGY8hRAUPOyn1NdR1CCCGEEI1sDWAfF5X0GIBxslssMDc6PvxSjbouXAk6J9ez/XSMqRrR8eFHo+PDQ43/rrm1b1xUUnvjVwvgbxhWtCAuKinQGNgSF5XkD/TEsMrFNqCb8bg1hgHRujYaWQZMMr4eDyRFx4dX5DF3xzAJsNE1h0l6U4CVxtd15af4XKPcAzhXJdiuKK/l9OnThIWFVf6bM2dOXdWEEEIIIZrcnDlzKmMUoPLjXmNweD/wYFxUUgaGT96LgdfqaOY94J9xUUm7qP88s5XA0KsdNC4PtxnoEReVlBMXlVTxSf3EuKikAxjyno8DXxrLBwO746KSkjGsbvF0dHx4nnHi3jPAjxiC8q+j48P3GN9jelxU0ljj+f8BPOKikg4Cf8aQc1zhTmBFPa/rpihN065f60YaVupnoEMdh/6qadpSY52/AmHAA5qmaUqpWcAWTdO+Mh7/D1eC59Gapv3RWP4HDInd04z1uxrL/YCVmqbV2j4xLCxM2759e7Wy9PR0evXqddPXKgzkfgohhBA3Tym1Q9O0sKZ6v7iopCXAy9Hx4RlN9Z4NZVwf+Rdg8NVW3DClRlvFQtO0kdc6rpSajGHh6RHalSj9WvkpdZXnA65KKUvjKPLV8lmEEEIIIUTdXsEwWa/ZBsgYcq5faYrgGMy0zJtSajTwMjBM07Sq+TPLgIVKqfcxzFLsBmzFsBNLN6VUIIYAeALwsHHUeS2GHJXFGHJWljbdlZjGW2+9xcKFC9HpdFhYWDB79mwGDKhr5ZOrW7ZsGXv37uWVV165fmUhhBBCCKPo+PD9QLPe49o4ut1kAby51kGeBdgAq41bM27RNC1K07Q9SqmvMczY1APRmqaVASilKvJWdMAXmqbtMbb1F2CxUmoGsAtD7kqLsXnzZhITE9m5cyc2Njbk5eVRUlJy/RNrGDt2LGPHjr1+RSGEEEIIcU1mCZArcoavcuwt6tg+UdO0H4Af6ijPxLDKxU1ZtWoVJ06cuNlmqunQoQOjR9e1O+MVubm5eHp6YmNjA1C5DNuaNWuYOnUqer2eW2+9lU8//RQbGxsCAgKYNGkSy5cvp7S0lG+++YaePXsyd+5ctm/fzqxZs1i+fDkzZsygpKQEDw8PFixYgJeXl0mvTQghhBCitWoOq1i0aaNGjeLo0aN0796dp59+ml9++YXi4mImT55MQkICqamp6PV6Pv3008pzPD092blzJ0899RQzZ86s1ebgwYPZsmULu3btYsKECbz3XqNvOCOEEEII0WrIVtNG1xvpbSyOjo7s2LGDDRs2sHbtWiIjI3n11VcJDAyke/fuAEyaNIm4uDheeOEFAB544AEA+vfvz//+979abebk5BAZGUlubi4lJSUEBgY23QUJIYQQQrRwMoLcDOh0OoYPH86bb77JrFmz+P77769ZvyIdQ6fTodfXnsz57LPP8swzz5Camsrs2bMpLi5ulH4LIYQQQrRGEiCb2f79+8nIuDIpMzk5mS5dupCVlcXBg4YdJP/73/8ybNiwerdZUFCAj49hv5R58+aZtsNCCCGEEK2cpFiYWWFhIc8++yznzp3D0tKSrl27MmfOHCZOnMiDDz5YOUkvKuqaW6IDYFwRhGnTpvHggw/i5uZGeHg4hw8fbuzLEEIIIYRoNRptJ73mprXvpBcbG8v58+d58803zdaH1nQ/hRBCCHNp6p30RG0ygtwKxMfHM3fu3Don7AkhhBBCiIaRHORWICoqitTUVLp162burgghhBBCtHhtPkBuKykmjU3uoxBCCCFaizYdINva2pKfny/B3U3SNI38/HxsbW3N3RUhhBBCiJvWpnOQfX19ycnJ4fTp0+buSotna2uLr6+vubshhBBCCHHT2nSAbGVlJbvMCSGEEEKIatp0ioUQQgghhBA1SYAshBBCCCFEFRIgCyGEEEIIUUWb2UlPKXUB2G/ufrQQnkCeuTvRgsj9qj+5V/Un96r+5F7Vn9yrhjHX/fLXNK2dGd5XGLWlSXr7ZdvG+lFKbZd7VX9yv+pP7lX9yb2qP7lX9Sf3qmHkfrVdkmIhhBBCCCFEFRIgCyGEEEIIUUVbCpDnmLsDLYjcq4aR+1V/cq/qT+5V/cm9qj+5Vw0j96uNajOT9IQQQgghhKiPtjSCLIQQQgghxHVJgCyEEEIIIUQVbSJAVkqNVkrtV0odVEq9Yu7+NCdKKT+l1Fql1F6l1B6l1PPGcnel1GqlVIbxq5u5+9pcKKV0SqldSqlE4/eBSqnfjM9XglLK2tx9bA6UUq5KqW+VUvuUUulKqYHyXNVNKfWi8ecvTSm1SCllK8/VFUqpL5RSp5RSaVXK6nyWlMFHxvuWopS6xXw9b3pXuVf/Mv4cpiilliilXKsce9V4r/Yrpe4yT6/No657VeVYjFJKU0p5Gr9v089VW9TqA2SllA6IA+4GgoCJSqkg8/aqWdEDMZqmBQG3A9HG+/MKsEbTtG7AGuP3wuB5IL3K9+8CH2ia1hU4Czxhll41Px8CqzRN6wn0xXDP5LmqQSnlAzwHhGma1gfQAROQ56qqucDoGmVXe5buBroZ//0f8GkT9bG5mEvte7Ua6KNpWghwAHgVwPi7fgLQ23jOJ8b/Z7YVc6l9r1BK+QGjgCNVitv6c9XmtPoAGbgNOKhpWqamaSXAYmCcmfvUbGialqtp2k7j6wsYghgfDPdonrHaPOA+8/SweVFK+QL3AJ8bv1dAOPCtsYrcK0Ap5QIMBf4DoGlaiaZp55Dn6mosATullCVgD+Qiz1UlTdPWA2dqFF/tWRoHzNcMtgCuSinvpump+dV1rzRN+0nTNL3x2y2Ar/H1OGCxpmmXNU07DBzE8P/MNuEqzxXAB8DLQNVVDNr0c9UWtYUA2Qc4WuX7HGOZqEEpFQD0A34DvDRNyzUeOgF4malbzc2/MfziLDd+7wGcq/I/H3m+DAKB08CXxnSUz5VSDshzVYumaceAmRhGq3KBAmAH8lxdz9WeJfmdf21TgJXG13KvalBKjQOOaZq2u8YhuVdtTFsIkEU9KKUcge+AFzRNO1/1mGZYC7DNrweolIoATmmatsPcfWkBLIFbgE81TesHXKRGOoU8VwbG3NlxGP6o6Ag4UMfHvuLq5FmqH6XUXzGk1S0wd1+aI6WUPfAa8Lq5+yLMry0EyMcAvyrf+xrLhJFSygpDcLxA07T/GYtPVnx8ZPx6ylz9a0YGAWOVUlkYUnXCMeTZuho/Ggd5virkADmapv1m/P5bDAGzPFe1jQQOa5p2WtO0UuB/GJ41ea6u7WrPkvzOr4NSajIQATyiXdkAQe5VdV0w/KG62/h73hfYqZTqgNyrNqctBMjbgG7GGeHWGCYkLDNzn5oNYw7tf4B0TdPer3JoGTDJ+HoSsLSp+9bcaJr2qqZpvpqmBWB4jpI0TXsEWAuMN1aTewVomnYCOKqU6mEsGgHsRZ6ruhwBbldK2Rt/HivulTxX13a1Z2kZ8Jhx1YHbgYIqqRhtklJqNIbUsLGapl2qcmgZMEEpZaOUCsQwAW2rOfrYHGialqppWntN0wKMv+dzgFuMv8/kuWpj2sROekqpMRhyR3XAF5qmvWXmLjUbSqnBwAYglSt5ta9hyEP+GugEZAMPaZpW12SGNkkpNRyYqmlahFKqM4YRZXdgF/CopmmXzdm/5kApFYphMqM1kAk8juGPcnmualBKvQlEYvj4exfwRwz5jfJcAUqpRcBwwBM4CbwBfE8dz5Lxj4xZGNJULgGPa5q23Rz9Noer3KtXARsg31hti6ZpUcb6f8WQl6zHkGK3smabrVVd90rTtP9UOZ6FYXWZvLb+XLVFbSJAFkIIIYQQor7aQoqFEEIIIYQQ9SYBshBCCCGEEFVIgCyEEEIIIUQVEiALIYQQQghRhQTIQgghhBBCVCEBshCizVFKlSmlkpVSaUqp5UopVxO2naWU8jRVe0IIIZqeBMhCiLaoSNO0UE3T+gBngGhzd0gIIUTzIQGyEKKt24xhUw6UUsOVUokVB5RSs4xb9FaMDL+plNqplEpVSvU0lnsopX5SSu1RSn0OqCrnP6qU2mocrZ6tlNIZywuVUm8ppXYrpbYopbya8HqFEEJchwTIQog2yxiwjqD+28/naZp2C/ApMNVY9gawUdO03sASDDu7oZTqhWF3vEGapoUCZcAjxnMcMOxm1hdYDzxpgssRQghhIpbm7oAQQpiBnVIqGcPIcTqwup7n/c/4dQfwgPH10IrXmqatUEqdNZaPAPoD2wy71GIHnDIeKwESq7T1uxu7DCGEEI1BRpCFEG1RkXFU1x9DSkRFDrKe6r8XbWucd9n4tYzrDzAoYJ4x1zlU07QemqZNMx4r1TRNa0BbQgghmpAEyEKINkvTtEvAc0CMUsoSyAaClFI2xpUtRtSjmfXAwwBKqbsBN2P5GmC8Uqq98Zi7Usrf1NcghBDC9CRAFkK0aZqm7QJSgImaph0FvgbSjF931aOJN4GhSqk9GFItjhjb3Qv8DfhJKZWCIY3D2/RXIIQQwtTUlU/5hBBCCCGEEDKCLIQQQgghRBUSIAshhBBCCFGFBMhCCCGEEEJUIQGyEEIIIYQQVUiALIQQQgghRBUSIAshhBBCCFGFBMhCCCGEEEJU8f8hFp5BiPbq0gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plotter(df_cumsum)\n",
"plt.savefig('aktueller_stand.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Integrated \n",
" \n",
" \n",
" \n",
" \n",
" Moritz \n",
" 1540.0 \n",
" \n",
" \n",
" Michi \n",
" 1040.0 \n",
" \n",
" \n",
" MP \n",
" 770.0 \n",
" \n",
" \n",
" Balthasar \n",
" 710.0 \n",
" \n",
" \n",
" check \n",
" 0.0 \n",
" \n",
" \n",
" Sonja \n",
" -230.0 \n",
" \n",
" \n",
" Philipp \n",
" -1880.0 \n",
" \n",
" \n",
" Olaf \n",
" -1950.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Integrated\n",
"Moritz 1540.0\n",
"Michi 1040.0\n",
"MP 770.0\n",
"Balthasar 710.0\n",
"check 0.0\n",
"Sonja -230.0\n",
"Philipp -1880.0\n",
"Olaf -1950.0"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integ=np.trapz(df,x=df.index, axis=0)\n",
"df_integ=pd.DataFrame(integ, index=df.columns, columns=['Integrated'])\n",
"df_integ.sort_values('Integrated', ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def make_gif():\n",
" for t in range(2, len(df_cumsum)+1):\n",
" success,res=plotter(df_cumsum, t)\n",
" plt.savefig('pngs/{:03d}'.format(t))\n",
" plt.close()\n",
" \n",
" !convert -delay 20 -loop 0 pngs/* schafkopf_evolution_20.gif"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"#make_gif()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Definiere bessere Variablen"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"df_results = df_raw[1:]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Vergeben ist kein richtiges Spiel"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" startzeit \n",
" Balthasar \n",
" Michi \n",
" Moritz \n",
" MP \n",
" Olaf \n",
" Philipp \n",
" Sonja \n",
" spieler0 \n",
" spieler1 \n",
" ... \n",
" jungfrau3 \n",
" vergeben \n",
" verspielt \n",
" farbe \n",
" endzeit \n",
" kommentar \n",
" manual_res0 \n",
" manual_res1 \n",
" manual_res2 \n",
" manual_res3 \n",
" \n",
" \n",
" \n",
" \n",
" 70 \n",
" 1579088680 \n",
" NaN \n",
" 0.0 \n",
" 20.0 \n",
" -20.0 \n",
" 0.0 \n",
" 0.0 \n",
" NaN \n",
" Philipp \n",
" Moritz \n",
" ... \n",
" False \n",
" True \n",
" NaN \n",
" keine \n",
" 1.579089e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 143 \n",
" 1579681053 \n",
" 0.0 \n",
" 20.0 \n",
" NaN \n",
" NaN \n",
" 0.0 \n",
" -20.0 \n",
" NaN \n",
" Balthasar \n",
" Olaf \n",
" ... \n",
" False \n",
" True \n",
" NaN \n",
" keine \n",
" 1.579681e+09 \n",
" \n",
" NaN \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
2 rows × 44 columns
\n",
"
"
],
"text/plain": [
" startzeit Balthasar Michi Moritz MP Olaf Philipp Sonja \\\n",
"70 1579088680 NaN 0.0 20.0 -20.0 0.0 0.0 NaN \n",
"143 1579681053 0.0 20.0 NaN NaN 0.0 -20.0 NaN \n",
"\n",
" spieler0 spieler1 ... jungfrau3 vergeben verspielt farbe \\\n",
"70 Philipp Moritz ... False True NaN keine \n",
"143 Balthasar Olaf ... False True NaN keine \n",
"\n",
" endzeit kommentar manual_res0 manual_res1 manual_res2 manual_res3 \n",
"70 1.579089e+09 NaN NaN NaN NaN \n",
"143 1.579681e+09 NaN NaN NaN NaN \n",
"\n",
"[2 rows x 44 columns]"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_results[df_results.vergeben]"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"df_results = df_results[df_results.vergeben==False]"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" spieler \n",
" spieltyp \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 2 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 3 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 4 \n",
" 3.0 \n",
" Solo \n",
" \n",
" \n",
" 5 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 6 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 7 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 8 \n",
" 0.0 \n",
" Wenz \n",
" \n",
" \n",
" 9 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 10 \n",
" -1.0 \n",
" Ramsch \n",
" \n",
" \n",
" 11 \n",
" 3.0 \n",
" Wenz \n",
" \n",
" \n",
" 12 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 13 \n",
" 3.0 \n",
" Solo \n",
" \n",
" \n",
" 14 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 15 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 16 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 17 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 18 \n",
" -1.0 \n",
" Ramsch \n",
" \n",
" \n",
" 19 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 20 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 21 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 22 \n",
" 2.0 \n",
" Wenz \n",
" \n",
" \n",
" 23 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 24 \n",
" 1.0 \n",
" Solo \n",
" \n",
" \n",
" 25 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 26 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 27 \n",
" 1.0 \n",
" Solo \n",
" \n",
" \n",
" 28 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 29 \n",
" 0.0 \n",
" Solo \n",
" \n",
" \n",
" 30 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 118 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 119 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 120 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 121 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 122 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 123 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 124 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 125 \n",
" -1.0 \n",
" Ramsch \n",
" \n",
" \n",
" 126 \n",
" 2.0 \n",
" Solo \n",
" \n",
" \n",
" 127 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 128 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 129 \n",
" 1.0 \n",
" Solo \n",
" \n",
" \n",
" 130 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 131 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 132 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 133 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 134 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 135 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 136 \n",
" 2.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 137 \n",
" 2.0 \n",
" Wenz \n",
" \n",
" \n",
" 138 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 139 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 140 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 141 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 142 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 144 \n",
" 3.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 145 \n",
" 0.0 \n",
" Sauspiel \n",
" \n",
" \n",
" 146 \n",
" 3.0 \n",
" Wenz \n",
" \n",
" \n",
" 147 \n",
" 1.0 \n",
" Wenz \n",
" \n",
" \n",
" 148 \n",
" 1.0 \n",
" Sauspiel \n",
" \n",
" \n",
"
\n",
"
146 rows × 2 columns
\n",
"
"
],
"text/plain": [
" spieler spieltyp\n",
"1 0.0 Sauspiel\n",
"2 2.0 Sauspiel\n",
"3 3.0 Sauspiel\n",
"4 3.0 Solo\n",
"5 2.0 Sauspiel\n",
".. ... ...\n",
"144 3.0 Sauspiel\n",
"145 0.0 Sauspiel\n",
"146 3.0 Wenz\n",
"147 1.0 Wenz\n",
"148 1.0 Sauspiel\n",
"\n",
"[146 rows x 2 columns]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_results.filter([\"spieler\", \"spieltyp\"])"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"df_results[\"Ansager\"] = df_results[1:].apply(lambda x: getattr(x, \"spieler{}\".format(int(x.spieler)), \"niemand\"), axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAATkElEQVR4nO3df7RlZX3f8fcHkKigATJTyg/NECUSDIo4JfxopBFjUBNhZaGRgo5IiukiGqqmWOtSk7apVI1RbDVUQDAEBWLEX9GQiWgCBJ0Bwk+DFFBAkCGIihoU+PaP/czD4XpHLsPcs+/c+36tddfs/ewf53v3nHs+59n77OekqpAkCWCLsQuQJC0choIkqTMUJEmdoSBJ6gwFSVK31dgFPBrLli2rFStWjF2GJG1W1q5de2dVLZ9t2WYdCitWrGDNmjVjlyFJm5UkX9vQMk8fSZI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkrrN+o7mh/Ps3z9j7BIWjLXveMXYJUjaDMxbTyHJqUnuSHLVRNsOSc5P8tX27/atPUnem+T6JFck2We+6pIkbdh8nj76EHDIjLY3AqurandgdZsHeAGwe/s5Fnj/PNYlSdqAeQuFqvoicNeM5kOB09v06cBhE+1n1OAfgO2S7DRftUmSZjftC807VtVtbfp2YMc2vQtw88R6t7S2H5Pk2CRrkqxZt27d/FUqSUvQaJ8+qqoCaiO2O7mqVlbVyuXLZx0OXJK0kaYdCt9cf1qo/XtHa78VeNLEeru2NknSFE07FD4BrGrTq4DzJtpf0T6FtB/w7YnTTJKkKZm3+xSSnAX8O2BZkluAtwJvB85OcgzwNeClbfXPAC8Erge+Dxw9X3VJkjZs3kKhqo7YwKKDZ1m3gOPmqxZJ0tw4zIUkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkbpRQSPKfklyd5KokZyV5bJLdklyS5PokH02y9Ri1SdJSNvVQSLIL8FpgZVX9IrAl8DLgRODdVfVU4FvAMdOuTZKWurFOH20FPC7JVsDjgduA5wLntuWnA4eNVJskLVlTD4WquhV4J/B1hjD4NrAWuLuq7mur3QLsMtv2SY5NsibJmnXr1k2jZElaMsY4fbQ9cCiwG7AzsA1wyFy3r6qTq2plVa1cvnz5PFUpSUvTGKePngfcWFXrqupHwMeAA4Ht2ukkgF2BW0eoTZKWtDFC4evAfkkenyTAwcA1wOeBw9s6q4DzRqhNkpa0Ma4pXMJwQflS4MpWw8nACcDrklwP/AxwyrRrk6SlbquHX2XTq6q3Am+d0XwDsO8I5UiSGu9oliR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkbpRQSLJdknOTfCXJtUn2T7JDkvOTfLX9u/0YtUnSUjZWT+E9wGerag/gmcC1wBuB1VW1O7C6zUuSpmjqoZDkp4HnAKcAVNUPq+pu4FDg9Lba6cBh065Nkpa6MXoKuwHrgNOSXJbkg0m2AXasqtvaOrcDO862cZJjk6xJsmbdunVTKlmSloYxQmErYB/g/VX1LOB7zDhVVFUF1GwbV9XJVbWyqlYuX7583ouVpKVkTqGQZPVc2uboFuCWqrqkzZ/LEBLfTLJT2/dOwB0buX9J0kb6iaGQ5LFJdgCWJdm+fUJohyQrgF025gGr6nbg5iRPa00HA9cAnwBWtbZVwHkbs39J0sbb6mGWvxo4HtgZWAuktX8HeN+jeNzXAGcm2Rq4ATiaIaDOTnIM8DXgpY9i/5KkjfATQ6Gq3gO8J8lrquqkTfWgVXU5sHKWRQdvqseQJD1yD9dTAKCqTkpyALBicpuqOmOe6pIkjWBOoZDkw8BTgMuB+1tzAYaCJC0icwoFhlM9e7aPikqSFqm53qdwFfCv57MQSdL45tpTWAZck+RLwL3rG6vqxfNSlSRpFHMNhbfNZxGSpIVhrp8++sJ8FyJJGt9cP330XR4ci2hr4DHA96rqifNVmCRp+ubaU3jC+ukkYRjmer/5KkqSNI5HPEpqDT4O/No81CNJGtFcTx/95sTsFgz3LfzLvFQkSRrNXD999BsT0/cBNzGcQpIkLSJzvaZw9HwXIkka31y/ZGfXJH+Z5I728xdJdp3v4iRJ0zXXC82nMXwJzs7t55OtTZK0iMw1FJZX1WlVdV/7+RDgFyRL0iIz11D45yRHJdmy/RwF/PN8FiZJmr65hsKrGL4e83bgNuBw4JXzVJMkaSRz/UjqHwKrqupbAEl2AN7JEBaSpEVirj2FZ6wPBICqugt41vyUJEkay1xDYYsk26+faT2FufYyJEmbibm+sL8LuDjJOW3+JcD/mJ+SJEljmesdzWckWQM8tzX9ZlVdM39lSZLGMOdTQC0EDAJJWsQe8dDZkqTFy1CQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJK60UKhDcF9WZJPtfndklyS5PokH02y9Vi1SdJSNWZP4feAayfmTwTeXVVPBb4FHDNKVZK0hI0SCu37nV8EfLDNh2EIjXPbKqcDh41RmyQtZWP1FP4E+M/AA23+Z4C7q+q+Nn8LsMsYhUnSUjb1UEjy68AdVbV2I7c/NsmaJGvWrVu3iauTpKVtjJ7CgcCLk9wEfIThtNF7gO2SrB+gb1fg1tk2rqqTq2plVa1cvnz5NOqVpCVj6qFQVf+lqnatqhXAy4C/raojgc8zfPczwCrgvGnXJklL3UK6T+EE4HVJrme4xnDKyPVI0pIz6ldqVtUFwAVt+gZg3zHrkaSlbiH1FCRJIzMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHVTD4UkT0ry+STXJLk6ye+19h2SnJ/kq+3f7addmyQtdWP0FO4DXl9VewL7Accl2RN4I7C6qnYHVrd5SdIUTT0Uquq2qrq0TX8XuBbYBTgUOL2tdjpw2LRrk6SlbtRrCklWAM8CLgF2rKrb2qLbgR03sM2xSdYkWbNu3bqp1ClJS8VooZBkW+AvgOOr6juTy6qqgJptu6o6uapWVtXK5cuXT6FSSVo6RgmFJI9hCIQzq+pjrfmbSXZqy3cC7hijNklaysb49FGAU4Brq+qPJxZ9AljVplcB5027Nkla6rYa4TEPBF4OXJnk8tb2JuDtwNlJjgG+Brx0hNokaUmbeihU1d8D2cDig6dZiyTpobyjWZLUGQqSpG6MawraTH39D/cau4QF48lvufJR7+PAkw7cBJUsDhe+5sKxS1BjT0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlS530KkhaFLzznoLFLWDAO+uIXNnpbewqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoWVCgkOSTJPyW5Pskbx65HkpaaBRMKSbYE/jfwAmBP4Igke45blSQtLQsmFIB9geur6oaq+iHwEeDQkWuSpCUlVTV2DQAkORw4pKp+u82/HPilqvrdGesdCxzbZp8G/NNUC904y4A7xy5iEfF4bjoey01rczmeP1tVy2dbsNW0K3m0qupk4OSx63gkkqypqpVj17FYeDw3HY/lprUYjudCOn10K/CkifldW5skaUoWUih8Gdg9yW5JtgZeBnxi5JokaUlZMKePquq+JL8LfA7YEji1qq4euaxNZbM63bUZ8HhuOh7LTWuzP54L5kKzJGl8C+n0kSRpZIaCJKkzFGaR5L8muTrJFUkuT/JLU3jMDz7cHdxJLkiyWX/c7eE8kmO/FI7HI5Hk3UmOn5j/XJIPTsy/K8nrxqlu4Upyf3uuXZXkk0m2G6GGBfNcNhRmSLI/8OvAPlX1DOB5wM3z/bhV9dtVdc18P85CNtaxX0QuBA4ASLIFw41UT59YfgBw0Qh1LXQ/qKq9q+oXgbuA48YuaEyGwo/bCbizqu4FqKo7q+obSd6S5Mvt3cTJSQIPTfgky5Lc1KafnuRL7R3IFUl2T7IiyVeSnJnk2iTnJnn8LPt5fpKLk1ya5Jwk245xIEawoWN/cJLLklyZ5NQkPzVzwyRHtOVXJTlx6pUvDBcB+7fppwNXAd9Nsn07Zr8AXJrk99tz+YokfwDQnpvXJvm/raf210kel2Tn9hxe/3N/kp8d59ebiouBXQCSbJtkdfs7vDLJoa19/d/xh5Jc1/6en5fkwiRfTbJvW++gieN2WZIntPYT2v7+McnbJx77Je0147okvzztX7yrKn8mfoBtgcuB64D/AxzU2neYWOfDwG+06QuAlW16GXBTmz4JOLJNbw08DlgBFHBgaz8VeMPkfto+vghs09pPAN4y87EW489sxx54LENv4efbOmcAx884ZjsDXweWM3zM+m+Bw8b+fUY6hjcCTwZeDfwO8N+AFwIHAn8HPJ/hY5NheFP4KeA57bl5H7B328/ZwFEz9n0ccPbYv+M8HLN72r9bAucwDLdDey49sU0vA65vx239sdqrHcO17W85DOO1fbxt88mJv/Vt2/5ewBDej2/tO0w8l9/Vpl8I/M1Yx8OewgxVdQ/wbIbxldYBH03ySuBXklyS5ErguTy0Wz6bi4E3JTmBYZyRH7T2m6vqwjb9Z8C/nbHdfgyjxF6Y5HJgFbCY35l1sx17hhe3G6vqurba6QwvYpP+DXBBVa2rqvuAM2dZZ6m4iOE00QEMz8GLJ+YvZAiF5wOXAZcCewC7t21vrKrL2/Rahhc/AJIcCPwH4FXz/htM3+Pa39rtwI7A+a09wB8luQL4G4YexI5t2Y1VdWVVPQBcDayu4RX9Sh48bhcCf5zktcB27bn5POC0qvo+QFXdNVHHx9q/Dzn207Zgbl5bSKrqfobkvqCFwKuBZzC8S785ydsY3sHC8I5hfbg+dmIff57kEuBFwGeSvBq4gaGn8JCHmzEf4PyqOmLT/Uabj1mO/ZI+v7sR1l9X2Ivh9NHNwOuB7wCnMfS+/mdV/enkRklWAPdONN3P0LslyU7AKcCLW3AvNj+oqr3bqdzPMTzn3gscydD7fHZV/aidGl7/Nz55rB6YmH+A9rpaVW9P8mmGd/4XJvm1h6lj/T7uZ8TXZnsKMyR5WpLdJ5r25sGRWO9s5/cPn1h+E8O7Wybbk/wccENVvRc4jyFUAJ7cLqgC/Hvg72eU8A/AgUme2vazTZKff3S/1eZhA8f+/wEr1h8P4OXAF2Zs+iXgoHZNZ0vgiFnWWSouYrhYf1dV3d/eiW7HcK3hIoYXvVetv06VZJck/2pDO0vyGIZTKidM9NYWpfbu/bXA65NsBfw0cEcLhF/hEfbYkzyl9SZOZBjGZw+GXsjRE9cSd9ikv8QmYE/hx20LnJThY2n3MZxHPBa4m+Gd1+0M/8HrvRM4O8OQ3p+eaH8p8PIkP2rb/BHwRIaAOS7JqcA1wPsnH7yq1rXTVWdNXFB9M8N59sVuQ8f+LOCc9of6ZeADkxtV1W0Zvqnv8ww9rU9X1XlTrXzhuJLh/Pefz2jbtqruBP46yS8AF2f4rMQ9wFEM705ncwDDdZs/WH9RGnhhVX1jPoofW1Vd1k4XHcFwGvKTrce6BvjKI9zd8S1M1p9i+ququjfJ3sCaJD8EPgO8adP9Bo+ew1xMUeuif6qGj75J0oLj6SNJUmdPQZLU2VOQJHWGgiSpMxQkSZ2hIG2EJL+T5BUPs87bkryhTb8yyc7TqU7aeN6nIG2EqvrAw6/1EK9kuM9lUX6+X4uHPQWpaXePf7qNXnlVkt9KclOS/9VGtfzSxJ3mk72ApyT5bJK1Sf4uyR4z9ns4ww1gZ7YRM1+U5OMTy381yV+26XsyfC/C1W2EzuXTOwKSoSBNOgT4RlU9s91g+NnW/u2q2gt4H/Ans2x3MvCaqno28AaGEV67qjqX4Y7YI6tqb4a7WPeYeME/mmGUTYBtgDVV9XSGoTreusl+O2kODAXpQVcCv5rkxCS/XFXfbu1nTfy7/+QGbQyhAxiG4bgc+FOG74XYoDaa5oeBo9qQHvsDf9UWP8AwOizMPoquNK+8piA1VXVdkn0YRrX870lWr180udqMzbYA7m49gEfiNIbx9v8FOKcNqzxrWY9wv9KjYk9Batqng75fVX8GvAPYpy36rYl/L57cpqq+A9yY5CVtH0nyzFl2/13gCRPbfYPhovObGQJivS14cLTd2UbRleaVPQXpQXsB70jyAPAj4D8C5wLbt5Ez72UYPXOmI4H3J3kz8BjgI8A/zljnQ8AHkvwA2L996dKZwPKqunZive8B+7Z93cGDgSRNhWMfST9B+2KVlW3Y6U297/cBl1XVKRNt91TVUvlObi1A9hSkESRZy9AreP3YtUiT7ClIkjovNEuSOkNBktQZCpKkzlCQJHWGgiSp+/99nk6ctfUBGQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"spieltyp\", data=df_results)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAEGCAYAAADRzxQPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3wU5d338e8vCWcCiEROAguVECIHNRGRk0CtSh8q1kqRPlR86oHWWqt9pPW5W5Xi4baCPYiPrdRaRamCt+dqqUJFFBVK5JAQgngICIaTQjiFQJLr/mNmcc2dkA2T3c2az/v1yiuzs7Mzv5md5LvXzM5c5pwTAAA4MSmJLgAAgGRGkAIAEABBCgBAAAQpAAABEKQAAASQlugCotGpUycXCoUSXQYAJJW8vLzdzrmMRNfxVZcUQRoKhbRq1apElwEAScXMNie6hqaAQ7sAAARAkAIAEABBCgBAAElxjhQA0DDy8vJOSUtLe1jSANGYikaVpIKKioqrc3JydtY0AUEKAE1IWlraw126dOmfkZGxJyUlhZut16Gqqsp27dqVvX379oclXVzTNHwaAYCmZUBGRsY+QjQ6KSkpLiMjo1ReC77maeJYDwAg8VII0frxt1eteUmQAgAQAOdIAaAJy5k+L6ch55c364q8uqb5xS9+0eWZZ545OSUlxaWkpOjBBx/cPHbs2IMNWUd1kyZN6vXzn/98R05OzuHaphkyZEi/2bNnfzJq1KhD9Zk3QZogOdPn1TlN3qwr4lBJ0xPNtpfY/kAsLF68uM0///nPDvn5+YWtWrVyJSUlaeXl5Rbr5S5YsCBmd3ni0C4AIG62bdvWrGPHjhWtWrVyktS1a9eKUCh09Oabb+46YMCA/n379j198uTJvaqqqiR5rcRly5a1lqSSkpK07t27D5SkVatWtRw4cGD/rKys7MzMzOz8/PwWGzdubN67d+/TL7744t59+vQ5/aKLLuqzf//+lOrzefbZZ9udccYZWdnZ2f3HjRvXp7S0NFAWEqQAgLi55JJL9n366afNQ6HQgClTpvR8+eWX20rS9OnTdxYUFGzYtGnT+rKyspSnnnqq/fHmM2fOnIzrrrtuR1FRUeG6des29O7d+4gkFRcXt7z++ut3fvTRR+vT09OrZs2a9aWb9peUlKTdfffdXZctW/Z+YWHhhrPOOuvQHXfc0TnIOnFoFwAQN+3bt68qKCgoXLRoUfqSJUvSp06d+rXbbrtta7t27Sp/+9vfdjl8+HDK3r1707Kzs8skldY2n3PPPffg7Nmzu27durX55ZdfvmfgwIHlktSlS5cjF1xwwUFJ+v73v//Z/ffff4qkHeHXLV26tM2HH37YcsiQIVmSdPToUcvJyTkQZJ0IUgBAXKWlpWn8+PH7x48fv3/QoEFlf/7znztt3Lix9YoVKwpPO+20oz/72c+6HT58OMWf1lVWVkqSDh06dOxc6g9/+MPPR44cefC5555rP378+L5z5szZ3K9fv3KzL59urf7YOacRI0bse+mllz5uqPXh0C4AIG7Wrl3bIj8/v0X48erVq1uddtpp4dZkRWlpacpLL710Uvj5Hj16lK9cubKNJM2fP//Y+MLCwub9+/cv/9WvfrXzwgsv3LtmzZpWklRSUtJ88eLF4ek7Dhs27EutzdGjRx9ctWpV24KCghaStG/fvpR169a1UAC0SAGgCYvmcpWGtG/fvtQbbrih5759+1JTU1NdKBQqf+yxxzZ36NChon///qdnZGRUDB48+NilMLfccsuOSZMm9Xn00UczvvGNb+wNj3/iiSc6Lly48OS0tDSXkZFx9I477ijZu3dvaigUOjxnzpxTrr322tZ9+/Y9fPPNN++KXH63bt0qHnrooeLLL7+8z5EjR0ySbr/99m2DBg0qP9F1Muca/w0ucnNz3VetY28uf0kcLn9BU2Fmec653Mhxa9euLR48ePDuRNUUSxs3bmw+fvz4vps2bVrf0PNeu3Ztp8GDB4dqeo5DuwAABECQAgC+Evr163ckFq3RuhCkAAAEQJACABAAQQoAQAAEKQAAAXAdKQA0YVtmDmzQbtR63pbfoN2onWjXZvEUsyA1sx6S5knqLMlJmuuc+4OZdZS0QFJIUrGk7zrn9sSqDgBA45GobtRiKZaHdisk/V/nXLakoZJ+bGbZkm6RtMQ511fSEv8xAKAJqK0btRdeeCG9f//+2ZmZmdkTJ04MlZWV/Y9wfeihhzpmZmZm9+3b9/Qf/ehH3eNffc1iFqTOuRLn3Hv+8H5JGyR1lzRB0mP+ZI9JuiRWNQAAGpeaulE7dOiQTZs2rfeCBQs+fP/99wsrKipUvfuz4uLiZjNmzOi+dOnS9wsLC9evXr26zeOPP94hUesRKS5fNjKzkKQzJa2Q1Nk5V+I/tV3eoV8AQBMQ7kbtgQce2JyRkVExderUr913330Zp556ann4frdXXnnlZ2+99VZ65OveeuutNkOHDt3frVu3imbNmmnSpEmfv/HGG20TsxZfFvMvG5lZW0nPSLrRObcvsksb55wzsxpv9mtm10q6VpJ69uwZ6zIBAHFSvRu1P/3pTxl1v6rximmL1MyayQvR+c65Z/3RO8ysq/98V0k7a3qtc26ucy7XOZebkZHU2xgA4KupG7VQKFS+bdu25uGuzebNm3fyyJEj90e+buTIkQdXrFiRXlJSklZRUaGnn3664+jRowN1yN1QYvmtXZP0F0kbnHO/jXjqRUlTJd3j/34hVjUAAI4vmstVGlJt3aitXLny84kTJ36tsrJSgwcPPlS9+7NevXodvf3227edd955mc45O//88/dOmTJlb23LiadYHtodLun7kvLNbI0/7j/kBehCM7tK0mZJ341hDQCARmTkyJGHVq9eXVR9/IQJE/ZPmDChsPr4lStXbgwPT5s27fNp06Z9Husa6ytmQeqce0tSbdcGfT1WywUAIJ64RSAAAAEQpAAABECQAgAQAEEKAEAASdv7S870eXVOkzfrijhUAgBoypI2SAEAwQ2fM7xBu1Fb/pPlx70u9aqrrurRq1ev8ttuu22nJI0YMaJv9+7djyxYsGCzJF1zzTWndu/e/eiMGTN2NGRdscShXQBA3IwYMeLAu+++21aSKisrtWfPnrSNGze2Cj//73//u+3IkSMbxR2LokWQAgDiZsyYMQfee++9tpKUl5fXql+/fmVt2rSp3LVrV2pZWZl9+OGHLYcPH37o1ltv7TxgwID+mZmZ2TfddFM3Sdq4cWPzPn36nH755Zf3Ou20004fPnx43wMHDlhxcXGzrKys7PBPampqzvvvv988XutEkAIA4iYUCh1NTU11mzZtav7GG2+0GTp06MHc3NyD//rXv9q++eabrTMzM8teeeWV9A8++KDlunXrNmzYsKFwzZo1rf/xj3+0laQtW7a0vOGGG3Z+8MEH69u3b185b968k0Kh0NGioqLCoqKiwqlTp+668MIL92RmZh6J1zpxjhQAEFc5OTkHXn/99TbvvPNO2+nTp+/YsmVL8+XLl7dp37595TnnnHNg0aJF7ZYtW9YuOzs7W5IOHTqUUlRU1LJPnz5HunfvXj5s2LAySTrzzDMPFRcXH7sB/quvvtrmsccey1ixYsX/uAVhLBGkAIC4GjZs2IG33367bVFRUauzzz67rE+fPkd+//vfd27btm3llVdeuXvp0qXpN954Y8n06dN3R75u48aNzZs3b36s683U1FRXVlaWIkmbN29uNm3atNALL7zwQfv27aviuT4c2gUAxNWoUaMOLF68uEOHDh0q09LS1Llz58p9+/alrl69uu3YsWMPjhs3bt/jjz/eqbS0NEWSPv7442bbtm2rteFXXl5ul156aZ877rhjW7hz8HiiRQoATVhdl6vEwpAhQ8r27t2bdumll34WHpeVlVV28ODB1K5du1Zceuml+9avX9/y7LPPzpKk1q1bV82fP//jtLQ0V9P8Fi9e3KagoKDNnXfe2e3OO+/sJkmLFi3aFAqFjsZjfQhSAEBcpaWl6cCBA6sjxz3zzDPFkY9vvfXWnbfeeuvO6q/dtGnT+vDwzJkzj11rWl5e/l4MSo0Kh3YBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIAAufwGAJuyNUec1aDdq5y17o87rUlNTU3P69u1bVllZaT169ChfuHDhx506dapsyDrqMmTIkH6zZ8/+ZNSoUYeCzosWKQAgrlq0aFFVVFRUuGnTpvUdOnSomDVrVkaiawqCIAUAJMzQoUMPbtu2rbkklZaWppx77rmZ2dnZ/TMzM7OfeOKJDpJ3j93evXuf/p3vfCcUCoUGXHzxxb2ff/759LPOOiurV69eA15//fXWkvTyyy+3DXel1r9//+w9e/akSNIvf/nLLpmZmdn9+vXLvu6667qHl/3kk0+eNHDgwP6hUGjAokWL2p7oOnBoFwCQEBUVFXr99dfTr7rqqt2SdyvAl19++YOOHTtWlZSUpJ1zzjlZ3/ve9/ZK0ieffNJywYIFH+Xk5BQPGjSo//z5809etWpV0d/+9rcOd911V9cxY8Z8eN9993W5//77N19wwQUHS0tLU1q3bl21cOHCdq+88kqHvLy8ovT09KodO3akRizf8vPzNyxYsKD9zJkzu1100UXvn8h60CIFAMRVeXl5SlZWVnZGRsbgXbt2Nbvkkkv2SVJVVZXdeOONp2ZmZmaPGTMmc+fOnc23bt2aJkndu3cvHzJkSFlqaqoyMzPLxo4duy8lJUVnnXXWoa1bt7aQpKFDhx64+eabe9x5552n7N69O7VZs2Z67bXX2k2ZMmV3enp6lSR17tz52LnYiRMn7pGkYcOGHdy6desJdwROkAIA4ip8jnTLli35zjndc889p0jSQw891PGzzz5Ly8/P31BUVFR48sknHw13kxbZfVpKSopatmzpJCk1NVWVlZUmSXfffff2hx9+eHNZWVnKyJEjs1avXt3yeHWE55GWlnZsHieCIAUAJER6enrV/fffv+XBBx/sfPToUZWWlqZ26tTpaIsWLdxLL72U/umnn9arlbh+/foWQ4YMKbvrrru2Dxo06GBBQUHLCy+8cN8TTzzRaf/+/SmSFHlot6FwjhQAmrBoLleJpeHDh5dlZWWVzZ07t+PVV1/9+bhx407LzMzMHjRo0KHevXsfrs+87r333lPefvvtdmbm+vXrV3bZZZeVtmrVyr333nutzzjjjP7NmjVz559/fukDDzywrSHXwZyrsXu3RiU3N9etWrXqS+Nyps+r83V5s66IVUmBJXv9ySyabS+x/ZH8zCzPOZcbOW7t2rXFgwcP3p2ompLV2rVrOw0ePDhU03Mc2gUAIACCFACAAAhSAGhaqqqqqk74G6pNkb+9qmp7niAFgKalYNeuXe0J0+hUVVXZrl272ksqqG0avrULAE1IRUXF1du3b394+/btA0RjKhpVkgoqKiqurm0CghQAmpCcnJydki5OdB1fJXwaAQAgAIIUAIAACFIAAAKIWZCa2SNmttPMCiLGzTCzbWa2xv/5ZqyWDwBAPMSyRfqopItqGP8759wZ/s8rMVw+AAAxF7Mgdc4tk/R5rOYPAEBjkIhzpNeb2Tr/0O9JCVg+AAANJt5B+kdJX5N0hqQSSffVNqGZXWtmq8xs1a5du+JVHwAA9RLXIHXO7XDOVTrnqiT9WdKQ40w71zmX65zLzcjIiF+RAADUQ1yD1My6Rjz8to5z70IAAJJBzG4RaGZPShotqZOZbZV0u6TRZnaGJCepWNK0WC0fAIB4iFmQOucm1zD6L7FaHgAAicCdjQAACIAgBQAgAIIUAIAACFIAAAKgY2/UW870eVFNlzfrihhXAsRfNPs/+37TQosUAIAACFIAAAIgSAEACIAgBQAgAIIUAIAACFIAAAIgSAEACIAgBQAgAIIUAIAACFIAAAIgSAEACCCqIDWzJdGMAwCgqTnuTevNrKWk1pI6mdlJksx/qp2k7jGuDQCARq+u3l+mSbpRUjdJefoiSPdJeiCGdQEAkBSOG6TOuT9I+oOZ/cQ5NydONQEAkDSi6o/UOTfHzIZJCkW+xjkXXceUAAB8RUUVpGb2uKSvSVojqdIf7SQRpACAJi2qIJWUKynbOediWQwAAMkm2iAtkNRFUkkMawHQSL0x6rw6pzlv2RtxqARofKIN0k6SCs1spaTy8Ejn3MUxqQoAgCQRbZDOiGURAAAkq2i/tcsxGwAAahDtt3b3y/uWriQ1l9RM0kHnXLtYFQYAQDKItkWaHh42M5M0QdLQWBUFAECyqHfvL87zvKQLY1APAABJJdpDu5dGPEyRd13p4ZhUBABAEon2W7vfihiukFQs7/AuAABNWrTnSP9PrAsBACAZRdux96lm9pyZ7fR/njGzU2NdHAAAjV20Xzb6q6QX5fVL2k3SS/44AACatGiDNMM591fnXIX/86ikjBjWBQBAUog2SD8zsylmlur/TJH0WSwLAwAgGUQbpD+Q9F1J2+X1AHOZpCtjVBMAAEkj2stfZkqa6pzbI0lm1lHSbHkBCwBAkxVti3RQOEQlyTn3uaQzj/cCM3vE/4ZvQcS4jmb2mplt8n+fdGJlAwDQOEQbpCmRoee3SOtqzT4q6aJq426RtMQ511fSEv8xAABJK9pDu/dJesfMnvYfT5R01/Fe4JxbZmahaqMnSBrtDz8maamkX0RZAwAAjU60dzaaZ2arJI31R13qnCs8geV1ds6V+MPbJXWubUIzu1bStZLUs2fPE1gUgMYoZ/q8OqfJm3VFHCoBGka0LVL5wXki4Vnb/JyZueM8P1fSXEnKzc2tdToAABKp3t2oBbTDzLpKkv97Z5yXDwBAg4p3kL4oaao/PFXSC3FePgAADSpmQWpmT0p6R1I/M9tqZldJukfSN8xsk6Tz/ccAACStqM+R1pdzbnItT309VssEACDe4n1oFwCArxSCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACIEgBAAiAIAUAIACCFACAAAhSAAACSEt0AbG0ZebAqKbreVt+jCsBAHxV0SIFACAAghQAgAAIUgAAAiBIAQAIgCAFACAAghQAgAAScvmLmRVL2i+pUlKFcy43EXUAABBUIq8jHeOc253A5QMAEBiHdgEACCBRLVIn6VUzc5Iecs7NrT6BmV0r6VpJ6tmzZ5zLQzwNnzO8zmmW/2R5HCqpv2hqlxpv/QCCS1SLdIRz7ixJ4yT92MxGVZ/AOTfXOZfrnMvNyMiIf4UAAEQhIUHqnNvm/94p6TlJQxJRBwAAQcU9SM2sjZmlh4clXSCpIN51AADQEBJxjrSzpOfMLLz8vznnFiWgDgAAAot7kDrnPpI0ON7LBQAgFrj8BQCAAAhSAAACIEgBAAggkbcIbDSS+YYAjdmWmQOjm/CkdrEtBABiiBYpAAABEKQAAARAkAIAEABBCgBAAAQpAAABEKQAAARAkAIAEABBCgBAAAQpAAABcGejRizaOwP1vC0/xpUAAGpDixQAgAAIUgAAAiBIAQAIgCAFACAAghQAgAAIUgAAAiBIAQAIgCAFACAAghQAgAAIUgAAAiBIAQAIgCAFACAAghQAgAAIUgAAAiBIAQAIgCAFACAAghQAgADSEl0A0FhtmTmw7olOahf7QpqgqLa9pMlRbv/lP1kepJx6a8j641076o8WKQAAARCkAAAEQJACABAAQQoAQAAEKQAAARCkAAAEkJAgNbOLzGyjmX1gZrckogYAABpC3IPUzFIl/X9J4yRlS5psZtnxrgMAgIaQiBbpEEkfOOc+cs4dkfSUpAkJqAMAgMDMORffBZpdJuki59zV/uPvSzrHOXd9temulXSt/7CfpI0xLKuTpN0xnH+sUX/iJHPtEvUnWqzr7+Wcy4jh/KFGfItA59xcSXPjsSwzW+Wcy43HsmKB+hMnmWuXqD/Rkr1+eBJxaHebpB4Rj0/1xwEAkHQSEaT/ltTXzHqbWXNJl0t6MQF1AAAQWNwP7TrnKszsekn/lJQq6RHn3Pp411FNXA4hxxD1J04y1y5Rf6Ile/1QAr5sBADAVwl3NgIAIACCFACAAJImSM2s0szWmNlaM3vPzIZF8ZoD/u+QmX0vYvyVZvZALOutj4h1KzCzp82stV9zQS3TzzSz8/3hpWaW6w+/YmYd4ll7DbU5M3si4nGame0ys7/7jy8+3m0ho13vhlZX3fWYT66Z3e8Pj45mPw0qltulvsJ/czGYb1371ZX+4zVmVmhm18Sijvows1PN7AUz22RmH5rZH8ysub9f1LlfmdmTZrbOzG6KR704cY32OtIalDnnzpAkM7tQ0n9KOi/K14YkfU/S32JTWu3MLM05V1HHZJHrNl/SDyU9W9vEzrnbahn/zRMutOEclDTAzFo558okfUMRlzc5517UCX5Lu7b1biDHrTsa/nu9StIqf9RoSQckvd2QhVYX4+3SWETz/ixwzl1vZqdIWm9mLzrndsS9UklmZvL+hv/onJvg3xp1rqS7JL0cxeu7SDrbOXdabCtFQ0iaFmk17STtkSQza2tmS/xWar6Z1XS7wXskjfQ/rYY/3XUzs0X+p8V7wxOa2R/NbJWZrTezX0eMv8f/pLvOzGb7475lZivMbLWZLTazzv74GWb2uJktl/R4PdftTUnhP55UM/uzX8urZtbKn/+j/h2ivsTMis2sk9+qKzKz+Wa2wcz+y8xaR0xzr7+tVppZLP5QX5H0v/zhyZKejKjx2NEAM+tsZs/5RxnWRrTe6rXecaq7o5k977//75rZIH/8l97rcGvDzELyPhDd5O934f0v/FNmZtF+EAzXEPLfzy9tm8jtYmY5ZvaGmeWZ2T/NrKs/fqmZ/c7ftzeY2dlm9qy//98ZsYzn/deuN+/uYuHxB8zsLv99ejdiX+9tZu/4+9Od1WtuYLW+P5GcczslfSipV4zrOZ6xkg475/7q11Qp6SZJP5DUOjyRmQ3xt99qM3vbzPr5T70qqXt434l38agn51xS/EiqlLRGUpGkUkk5/vg0Se384U6SPtAX30Y+4P8eLenvEfO6UtJHktpLailps6Qe/nMd/d+pkpZKGiTpZHm3KAzPt4P/+6SIcVdLus8fniEpT1KrKNftQMS6vCDpR/Ja0RWSzvCfWyhpij/8qKTL/OGlknL94WJ/G4QkOUnD/fGPSLo5Yppf+sNXRG6XBnqfDvjb7L/8bbsmcvv72/4Bf3iBpBsjtnf7aNc7BvtXXXXPkXS7PzxW0pqa3utqr5kR3u7VlvUteR+YmtWzxhq3TXi7SGomr/Wb4T8/Sd7lZeH95Df+8E8lfSqpq6QWkrZKOrna/t9KUkHEeCfpW/7wvZJ+5Q+/KOkKf/jH8vflBLw/kftVH0k7w+uSiB9JN0j6XQ3jV/vPhetuJynNHz5f0jMR73VBournp34/yXpo91xJ88xsgCSTdLeZjZJUJam7pM6SttcxvyXOuVJ/foXyPr1+Ium7/ifxNHn/aLIlFUo6LOkv5p3bCJ/fOFXSAv9Tf3NJH0fM/0XnHYKKRiszW+MPvynpL5K6SfrYORcenyfvjytanzjnlvvDT8j7453tP34y4vfv6jHPqDjn1vktssnyWhG1GSsvzOW8T+ylZnaSgq33Cauj7hGSvuNP9y8zO9nM2vnPRf1em1lfSbMkjXHOHT2BMo+3bfpJGiDpNTOTvA8nJRHPhw+p50ta75wr8Wv6SN7dxj6TdIOZfdufroekvv74I/piv8+Td2hVkobL3y7yjr785gTWKSpR7FeTzGyEpHJJ05xzn8eqlgbUXtJj/n7h5H0YQpJJpiA9xjn3jpl1kpQh6Zv+7xzn3FEzK5b3ibUu5RHDlZLSzKy3pJvlnZvYY2aPSmrpvJtIDJH0dXmf/K+XFwJzJP3WOfeimY2W1wIJO1iPVTr2ISHM/0dYvcZW9Zhn9QuEXRTDDelFecE9Wl6Lvj6CrHdQJ1J3VO+1mbWV14q8JhxiJ+B428bkBeS5dby2qtp8quTt/6PltYrOdc4dMrOl+uJv6ahzLryvVOrL/zvieTH68d6fBa5a5xcJVCjvf8Ux/gevnvKOml3gj75D0uvOuW/7HxKWxq9ENJSkPEdqZlnyPm1/Ju8T3U4/RMeo5vMi+yWlRzHrdvL+KZb654DG+ctrK6m9c+4Veec5BvvTt9cXX3iYeoKrEys9/Za75H3R6q2I5yZF/H4nRst/RNKvnXP5x5lmibzD2DKzVDNrH6Na6qO2ut+U9L8l79u4knY75/bVMa/q+90jkv7qnHuzgWqtbqOkjPD7bmbNzOz0ery+vaQ9fohmSRoaxWuWy7vNp+RvnxiLZr9qDJZIam1mV0jH+mG+T95h+EMR00X+D7kyjvWhASVTkLYKf1FD3rm1qf7hwPmScs0sX95hwqIaXrtOUqX/RYlav0runFsr7xxGkbxv+IYPjaZL+ruZrZMXSD/zx8+Q9LSZ5anxdeW0UdKPzWyDvHO5f4x47iR/XX4q74NBg3PObXXO3V/HZD+VNMZ/7/LkHUZPqOPUPUNSjr/d7lF0H5xekvRtf789T14L5QcRXzhq0F4/nNe/72WSfmNma+WdR6zP5TeL5LVMN8hbx3ejeM1P5e1n+fJOq8RUlPtVwvmt929LmmhmmyS9L+/00H9Um/ReSf9pZquVpEcIwS0Cv5L8Q0R/d84NqOG5YnlfTmpswQ8ASSmZWqQAADQ6tEgBAAiAFikAAAEQpAAABECQAgAQAEGKJsnMLjGvR5GsRNcCILkRpGiqJsu7JnhyoguJ5F+4DyCJEKRocvw7VY2QdJX8u/KY12vLUvN6ygn3nGP+c/Xp+SfDzF7ze0952Mw2+7ezlJlNMa/HnTVm9lA4NP2eVe7zb6JQ2+39ADRSBCmaogmSFjnn3pf0mZnl+OPPlHSjvDss9ZE03MxOlneHmtOdc4MkhbsKe0vSUOfcmZKekvRzf9PMIgkAAAFWSURBVPztkv7lnDtdXk8lPSXJzPrLuyXjcP++ypX64pZ6bSStcM4Nds5F3soRQBLgllRoiiZL+oM//JT/+O+SVjrntkqSfyvKkLzb5NWn558R8oJXzrlFZrbHH/91STmS/u03dFvJ6+pL8kL1mQZfSwBxQZCiSTGzjvJ67hloZk5e5wdO0suqoUegE+z5p8ZFS3rMOff/anjusH/faABJiEO7aGouk/S4c66Xcy7knOshrzU5sqaJT6Dnn+WSvuu/9gJ5HQZIXm8gl5nZKf5zHc2spp6KACQZghRNzWRJz1Ub94xq//ZufXv++bWkC8ysQNJEeR3M73fOFUr6laRX/Xm9Jq/jeABJjnvtAg3IzFpIqvQPCZ8r6Y/VO20H8NXCOVKgYfWUtNDMUiQdkXRNgusBEGO0SAEACIBzpAAABECQAgAQAEEKAEAABCkAAAEQpAAABPDfF7zyAbpUea8AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"Ansager\", data=df_results, hue=\"spieltyp\")\n",
"plt.legend(bbox_to_anchor=(1,1))"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAEGCAYAAAAdVi7kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAaFklEQVR4nO3de5RdZZnn8e9TFUIiASFQhCDEMJgrhERTooQGkQCCMsC0XMRbFJzIaNuNt4F2WA6idkOrbSuKdDqKsUW5Nh1EG2WyxLGBQSsQSEjCnXCRIoVAuJpQqWf+OLvkUKkklZB9TiX7+1nrrHP2/am9qup33n17IzORJKmKWppdgCRJzWIISpIqyxCUJFWWIShJqixDUJJUWUOaXcBA7Lbbbjl27NhmlyFJW5WFCxc+mZltza5jMNsqQnDs2LF0dHQ0uwxJ2qpExIpm1zDYeThUklRZhqAkqbIMQUlSZW0V5wQlSVvGwoULdx8yZMhcYH+q0RDqAZZ0d3d/bPr06Sv7TjQEJalChgwZMnePPfaY1NbW9nRLS8s2//Donp6e6OrqmtzZ2TkXOK7v9Cp8C5AkvWL/tra2Z6sQgAAtLS3Z1ta2ilrLd93pZW04IiZExKK617MRcWZEjIyIGyLi3uJ9l7JqkCSto6UqAdir+Hn7zbvSQjAz787MaZk5DZgOvAhcA5wNLMjMccCCYliSpIZr1DnBmcD9mbkiIo4HDivGzwNuBM5qUB2SpDrTP/+j6VtyfQu/9uGFG5re2dnZethhh00AePLJJ7draWnJkSNHdgMsWrRo2bBhwxraSm1UCL4P+GnxeVRmPl587gRG9bdARMwGZgOMGTNmgyuf/vkfbZkqX6OFX/tws0uQpEFtjz32WLt8+fKlAJ/5zGf2HDFixNrzzjvvifp5enp6yExaW1tLr6f0C2MiYii1K3Ku7Dsta93a95v6mTknM9szs72tzUffSdK2bMmSJdvvu++++x133HH7jBs3br/7779/6I477jitd/qcOXN2OeWUU94I8Mgjjww56qij9t1///0nTZkyZdKCBQt22NztNqIleAxwW2b2Jv0TETE6Mx+PiNHAOvdtSJKq58EHHxx2ySWXPHjooYe++PLLL693vjPOOGPMWWed1Tlz5swX7r777qHHHnvsuHvvvfeuzdlmI0LwVF45FApwLTALOL94n9+AGiRJg9zee++9+tBDD31xY/PddNNNO91///3DeodXrVrV+vzzz8eIESM2+XxiqSEYETsARwIfrxt9PnBFRJwOrABOLrMGSdLWYfjw4T29n1taXn227k9/+tOfR2TmFruIptRzgpn5Qmbumpmr6sb9MTNnZua4zDwiM58qswZJ0tantbWVnXbaae3ixYu3X7t2LfPnz9+5d9rBBx/87AUXXPDni0Vuvvnm4Zu7HR+bJkkVtrFbGprp3HPPffSYY44Zv+uuu758wAEHvLhmzZoAmDt37sOnnXbamPHjx++2du3amDFjxnMzZsx4eHO2EbULNAe39vb23FCnut4iIUnrioiFmdleP+6OO+54aOrUqU82q6ZmueOOO3abOnXq2L7jfXaoJKmyDEFJUmUZgpKkyjIEJUmVZQhKkirLEJQkVZb3CUpShT183pQt2pXSmC8u3uh9h62trdPHjRv3Uu/w/Pnz75swYcKa/uZ9rc8G3RhDUJLUUNtvv31Pb3dKzebhUElS0919991Dp0+fPmHy5MmTJk+ePOmGG25Yp3ukjo6OYVOmTJk0ceLEyePHj5+8ePHi7QEuuuiikb3j3//+97+xu7t7wNs1BCVJDbV69eqWiRMnTp44ceLkI488cl+APffcs/u3v/3tPUuXLl12+eWXP/DpT396nd7UL7zwwrZPfOITTyxfvnzpnXfeuWyfffZZc9tttw276qqrRnZ0dCxfvnz50paWlrz44ot3HWgtHg6VJDVUf4dD16xZE6effvobly5dOrylpYUVK1Zs33e5gw466IWvf/3rox999NGh73vf+56eMmXK6uuvv37HJUuWvG7q1KmToNbbxO677z7gpqAhKElquq9+9aujdt9995evvvrqB3t6ehg+fPg6F+ycccYZTx1yyCEvXHPNNa8/9thjx1144YUrMjNOOumkP373u999bHO26+FQSVLTrVq1qnX06NEvt7a2ctFFF+26du3adeZZunTp0EmTJq0+55xzVr7rXe96ZtGiRcOPPvroZ6+77rpdHnvssSEATzzxROs999wzdKDbtSUoSRU2kFsaGuHMM89c+d73vnffyy67bNfDDz98VX0Hu71+/OMfj7ziiit2HTJkSLa1tb385S9/+fFRo0atPeeccx6bOXPm+J6eHrbbbrv89re//fD48eP7veWiL7tS2oLsSknSYGJXSq+wKyVJkvowBCVJlWUISlK19PT09ESzi2ik4udd5xwjlByCEbFzRFwVEcsjYllEHBQRIyPihoi4t3jfpcwaJEmvsqSrq+v1VQnCnp6e6Orqej2wpL/pZV8d+i3g+sw8MSKGAq8DvgAsyMzzI+Js4GzgrJLrkCQB3d3dH+vs7Jzb2dm5P9U4GtgDLOnu7v5YfxNLC8GIeD1wKPARgMxcA6yJiOOBw4rZ5gE3YghKUkNMnz59JXBcs+sYLMr8FrAP0AVcEhG3R8TciNgBGJWZjxfzdAKj+ls4ImZHREdEdHR1dZVYpiSpqsoMwSHAW4DvZeabgReoHfr8s6zdpNjvjYqZOScz2zOzva2trcQyJUlVVWYIPgo8mpm3FsNXUQvFJyJiNEDxvrLEGiRJWq/SQjAzO4FHImJCMWomsBS4FphVjJsFzC+rBkmSNqTsq0M/BVxaXBn6APBRasF7RUScDqwATi65BkmS+lVqCGbmIqC9n0kzy9yuJEkDUYV7RCRJ6pchKEmqLENQklRZhqAkqbIMQUlSZRmCkqTKMgQlSZVlCEqSKssQlCRVliEoSaosQ1CSVFmGoCSpsgxBSVJlGYKSpMoyBCVJlWUISpIqyxCUJFWWIShJqixDUJJUWYagJKmyDEFJUmUNKXPlEfEQ8BywFujOzPaIGAlcDowFHgJOzsyny6xDkqT+NKIl+M7MnJaZ7cXw2cCCzBwHLCiGJUlquGYcDj0emFd8ngec0IQaJEkqPQQT+FVELIyI2cW4UZn5ePG5ExjV34IRMTsiOiKio6urq+QyJUlVVOo5QeAvMvOxiNgduCEiltdPzMyMiOxvwcycA8wBaG9v73ceSZJei1Jbgpn5WPG+ErgGOBB4IiJGAxTvK8usQZKk9SktBCNih4jYsfczcBSwBLgWmFXMNguYX1YNkiRtSJmHQ0cB10RE73Z+kpnXR8TvgSsi4nRgBXByiTVIkrRepYVgZj4ATO1n/B+BmWVtV5KkgfKJMZKkyjIEJUmVZQhKkirLEJQkVZYhKEmqLENQklRZhqAkqbIMQUlSZRmCkqTKMgQlSZVlCEqSKssQlCRVliEoSaosQ1CSVFmGoCSpsgxBSVJlGYKSpMoyBCVJlWUISpIqyxCUJFVW6SEYEa0RcXtEXFcM7xMRt0bEfRFxeUQMLbsGSZL604iW4N8Ay+qGLwC+mZlvAp4GTm9ADZIkrWNAIRgRCwYyrp959gLeA8wthgM4HLiqmGUecMJAi5UkaUsasqGJETEMeB2wW0TsAkQxaSfgDQNY/z8B/xPYsRjeFXgmM7uL4UfXt56ImA3MBhgzZswANiVJ0qbZWEvw48BCYGLx3vuaD3xnQwtGxLHAysxcuDmFZeaczGzPzPa2trbNWYUkSRu0wZZgZn4L+FZEfCozL9zEdR8MHBcR7waGUWs9fgvYOSKGFK3BvYDHNqNuSZJesw2GYK/MvDAiZgBj65fJzB9tYJm/Bf4WICIOAz6XmR+IiCuBE4HLgFnUWpWSJDXcgEIwIv4V2BdYBKwtRiew3hDcgLOAyyLiK8DtwPc3Yx2SJL1mAwpBoB2YnJm5ORvJzBuBG4vPDwAHbs56JEnakgZ6n+ASYI8yC5EkqdEG2hLcDVgaEb8DVveOzMzjSqlKkqQGGGgInltmEZIkNcNArw79TdmFSJLUaAO9OvQ5aleDAgwFtgNeyMydyipMkqSyDbQl2PvYs97nfx4PvL2soiRJaoRN7kUia/4deFcJ9UiS1DADPRz6l3WDLdTuG/xTKRVJktQgA7069L/Wfe4GHqJ2SFSSpK3WQM8JfrTsQiRJarSBdqq7V0RcExEri9fVRYe5kiRttQZ6YcwlwLXAnsXrZ8U4SZK2WgMNwbbMvCQzu4vXDwF7upUkbdUGGoJ/jIgPRkRr8fog8McyC5MkqWwDDcHTgJOBTuBxap3ifqSkmiRJaoiB3iJxHjArM58GiIiRwNephaMkSVulgbYED+gNQIDMfAp4czklSZLUGAMNwZaI2KV3oGgJDrQVKUnSoDTQIPsGcEtEXFkMnwR8tZyStl4Pnzel2SUw5ouLm12CJG01BvrEmB9FRAdweDHqLzNzaXllSZJUvgEf0ixCz+CTJG0zNrkrpYGKiGER8buIuCMi7oqILxXj94mIWyPivoi4PCKGllWDJEkbUloIAquBwzNzKjANODoi3g5cAHwzM98EPA2cXmINkiStV2khWHS++3wxuF3xSmrnFa8qxs8DTiirBkmSNqTMliDFI9YWASuBG4D7gWcys7uY5VHgDetZdnZEdERER1dXV5llSpIqqtQQzMy1mTkN2As4EJi4CcvOycz2zGxva/NZ3ZKkLa/UEOyVmc8AvwYOAnaOiN6rUvcCHmtEDZIk9VXm1aFtEbFz8Xk4cCSwjFoYnljMNguYX1YNkiRtSJmPPhsNzIuIVmphe0VmXhcRS4HLIuIrwO3A90usQZKk9SotBDPzTvp5yHZmPkDt/KAkSU3VkHOCkiQNRoagJKmyDEFJUmUZgpKkyjIEJUmVZQhKkirLEJQkVZYhKEmqLENQklRZhqAkqbIMQUlSZRmCkqTKMgQlSZVlCEqSKssQlCRVliEoSaosQ1CSVFmGoCSpsgxBSVJlGYKSpMoqLQQjYu+I+HVELI2IuyLib4rxIyPihoi4t3jfpawaJEnakDJbgt3AZzNzMvB24JMRMRk4G1iQmeOABcWwJEkNV1oIZubjmXlb8fk5YBnwBuB4YF4x2zzghLJqkCRpQxpyTjAixgJvBm4FRmXm48WkTmBUI2qQJKmv0kMwIkYAVwNnZuaz9dMyM4Fcz3KzI6IjIjq6urrKLlOSVEGlhmBEbEctAC/NzH8rRj8REaOL6aOBlf0tm5lzMrM9M9vb2trKLFOSVFFlXh0awPeBZZn5j3WTrgVmFZ9nAfPLqkGSpA0ZUuK6DwY+BCyOiEXFuC8A5wNXRMTpwArg5BJrkCRpvUoLwcz8TyDWM3lmWduVJGmgfGKMJKmyDEFJUmUZgpKkyjIEJUmVZQhKkirLEJQkVZYhKEmqLENQklRZhqAkqbIMQUlSZRmCkqTKMgQlSZVlCEqSKssQlCRVliEoSaosQ1CSVFmGoCSpsgxBSVJlGYKSpMoyBCVJlWUISpIqa0hZK46IHwDHAiszc/9i3EjgcmAs8BBwcmY+XVYN0mAw/fM/anYJLPzah5tdgjQoldkS/CFwdJ9xZwMLMnMcsKAYliSpKUoLwcz8v8BTfUYfD8wrPs8DTihr+5IkbUyjzwmOyszHi8+dwKj1zRgRsyOiIyI6urq6GlOdJKlSmnZhTGYmkBuYPicz2zOzva2trYGVSZKqotEh+EREjAYo3lc2ePuSJP1ZaVeHrse1wCzg/OJ9foO3rwHwakZJVVFaSzAifgrcAkyIiEcj4nRq4XdkRNwLHFEMS5LUFKW1BDPz1PVMmlnWNiVJ2hQ+MUaSVFmGoCSpsgxBSVJlNfrqUGlAHj5vSrNLAGDMFxc3uwRJJbIlKEmqLENQklRZhqAkqbIMQUlSZRmCkqTK8upQqQK82lbqny1BSVJlGYKSpMoyBCVJlWUISpIqyxCUJFWWIShJqixDUJJUWYagJKmyDEFJUmUZgpKkyjIEJUmV1ZQQjIijI+LuiLgvIs5uRg2SJDU8BCOiFfgucAwwGTg1IiY3ug5JkprREjwQuC8zH8jMNcBlwPFNqEOSVHGRmY3dYMSJwNGZ+bFi+EPA2zLzr/rMNxuYXQxOAO5uaKGbZzfgyWYXsY1wX25Z7s8ta2vZn2/MzLZmFzGYDdr+BDNzDjCn2XVsiojoyMz2ZtexLXBfblnuzy3L/bntaMbh0MeAveuG9yrGSZLUUM0Iwd8D4yJin4gYCrwPuLYJdUiSKq7hh0Mzszsi/gr4JdAK/CAz72p0HSXZqg7fDnLuyy3L/blluT+3EQ2/MEaSpMHCJ8ZIkirLEJQkVValQzAi/ldE3BURd0bEooh4WwO2OXdjT8iJiBsjYpu9/HpT9vu2vi82R0R8MyLOrBv+ZUTMrRv+RkR8pjnVDV4Rsbb4fVsSET+LiJ2bUIO/z4NMZUMwIg4CjgXekpkHAEcAj5S93cz8WGYuLXs7g1Wz9vs25iZgBkBEtFC7cXu/uukzgJubUNdg91JmTsvM/YGngE82uyA1X2VDEBgNPJmZqwEy88nM/ENEfDEifl98W5wTEQGv/gYXEbtFxEPF5/0i4nfFN8w7I2JcRIyNiOURcWlELIuIqyLidf2s56iIuCUibouIKyNiRDN2RIOtb7/PjIjbI2JxRPwgIrbvu2BEnFpMXxIRFzS88sHjZuCg4vN+wBLguYjYpdhvk4DbIuLzxe/ynRHxJYDid3NZRPxL0Rr/VUQMj4g9i9/h3tfaiHhjc368hrgFeANARIyIiAXF3+HiiDi+GN/7d/zDiLin+Hs+IiJuioh7I+LAYr531O232yNix2L8WcX67oiI8+u2fVLxP+OeiDik0T+4Xq3KIfgrYO/iF/GiiHhHMf47mfnW4tvicGqtlg05A/hWZk4D2oFHi/ETgIsycxLwLPCJ+oUiYjfgHOCIzHwL0AFU4RDWOvs9IoYBPwROycwp1G7d+R/1C0XEnsAFwOHANOCtEXFCY0sfHDLzD0B3RIyh1uq7BbiVWjC2A4uBw4Bx1J7VOw2YHhGHFqsYB3w3M/cDngHem5l/KFpJ04B/Aa7OzBUN/LEaJmoP8Z/JK/cn/wn4b8Xf4TuBb/R++QXeBHwDmFi83g/8BfA54AvFPJ8DPlnsu0OAlyLiGGrPRH5bZk4F/qGuhCGZeSBwJvC/y/kpNVCVDcHMfB6YTu35pF3A5RHxEeCdEXFrRCym9g93v/WvBaj9A/pCRJxF7Tl9LxXjH8nMm4rPP6b2h1Pv7dR60bgpIhYBs4Bt+Zs30P9+Bz4OPJiZ9xSzzQMO7bPoW4EbM7MrM7uBS/uZp0puphaAvSF4S93wTcBRxet24DZq/8DHFcs+mJmLis8LgbG9K42Ig4H/DpxW+k/QeMOLv7VOYBRwQzE+gL+LiDuB/0OthTiqmPZgZi7OzB7gLmBB1u4rW8wr++0m4B8j4q+BnYvfzyOASzLzRYDMfKqujn8r3l+179Ucg/bZoY2QmWuBG4Ebi9D7OHAA0J6Zj0TEucCwYvZuXvnSMKxuHT+JiFuB9wC/iIiPAw8AfW/A7DscwA2ZeeqW+4m2Dv3sd8/NbLre84JTqB0OfQT4LLWjDpcA7wD+PjP/uX6hiBgLrK4btZbaEQ8iYjTwfeC44svKtualzJxWnJr4JbXfu28DHwDagOmZ+XJxqqP3b7x+X/XUDfdQ/P/MzPMj4ufAu6l9qX3XRuroXcdaKv4/eDCobEswIiZExLi6UdN4paeKJ4vzcyfWTX+IWguG+vER8V+ABzLz28B8aiEKMKa4CARqh1D+s08J/w84OCLeVKxnh4gY/9p+qsFvPfv9fmBs774APgT8ps+ivwPeUZyPbQVO7WeeKrmZ2qH6pzJzbdHS2JnaIdGbqf2TP633PHNEvCEidl/fyiJiO+BK4Ky6Fvk2qWid/TXw2YgYArweWFkE4DvZxCMyEbFv0Vq8gNpjISdSa2V+tO5agJFb9IfQFlPlbyEjgAujdpl0N3AftUN0z1D7Zt1J7Re619eBK6LWxdPP68afDHwoIl4ulvk7YCdqgfrJiPgBsBT4Xv3GM7OrOPz607qLQM4Btul/QKx/v/8UuLL4p/R74OL6hTLz8Yg4G/g1tVb0zzNzfkMrH1wWU7sq9Cd9xo3IzCeBX0XEJOCW4vTW88AHqbU++jOD2vnEL/VeRAO8uzj/uM3JzNuLw5+nUju0/rPiqEQHsHwTV3dmEZ69h0z/IzNXR8Q0oCMi1gC/4JVziBpEfGxaCYpDTtcVF9dIkgapyh4OlSTJlqAkqbJsCUqSKssQlCRVliEoSaosQ1DagIg4IyI+vJF5zo2IzxWfP1I84k3SVqDK9wlKG5WZF298rlf5CLX7TLfJ++ukbY0tQVVO8XSenxdP918SEadExEMR8Q/FU/9/V/ckn/pW3r4RcX1ELIyI30bExD7rPZHaDeeXFj0KvCci/r1u+pERcU3x+fmo9Qt4V9R6MGhr3B6Q1MsQVBUdDfwhM6cWDzS4vhi/qujF4jvAP/Wz3BzgU5k5nVrPARfVT8zMq6g9ceQDRY8CvwAm1gXcR4EfFJ93ADqKnhx+g70JSE1hCKqKFgNHRsQFEXFIZq4qxv+07v2g+gWKZ3DOoPZot0XAP1PrG3G9it4G/hX4YPGYuIOA/ygm91DrQQP672VEUgN4TlCVk5n3RMRbqD31/ysRsaB3Uv1sfRZrAZ4pWnib4hLgZ9T6rLuy6Gan37I2cb2StgBbgqqc4urNFzPzx8DXgLcUk06pe7+lfpnMfBZ4MCJOKtYRETG1n9U/B+xYt9wfqF0kcw61QOzVwiu9kfTXy4ikBrAlqCqaAnwtInqAl6n1Yn8VsEvRs8Bqar0L9PUB4HsRcQ6wHXAZcEefeX4IXBwRLwEHFZ0sXwq0ZeayuvleAA4s1rWSVwJYUgP57FAJKDpSbS+6IdrS6/4OcHtmfr9u3POZOWJLb0vSprElKJUoIhZSa/V9ttm1SFqXLUFJUmV5YYwkqbIMQUlSZRmCkqTKMgQlSZVlCEqSKuv/A34Vi6ygQyOHAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"spieltyp\", data=df_results, hue=\"gewonnen\")\n",
"plt.legend(bbox_to_anchor=(1,1))"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbO0lEQVR4nO3de5gU9Z3v8feXEQQBUXFAE4TBSyIXcYQBQYUFccF4klWIl1Wz4jGoSTAQz9GYo/tE9OjxEhVcw0PUoxjwhtFAWJNHUVx2Ea9MQOSi4uIQx4OCYIwXcLl8zx/167EZZoaeoaubmd/n9TzzdHV1ddW3q2s+Xf3rql+ZuyMiIvFoVewCRESksBT8IiKRUfCLiERGwS8iEhkFv4hIZPYrdgG5OPTQQ72srKzYZYiINCuVlZUfu3tp7fHNIvjLyspYsmRJscsQEWlWzGxdXePV1CMiEhkFv4hIZBT8IiKRaRZt/CIiddm2bRvV1dVs3bq12KUUVdu2benWrRutW7fOaXoFv4g0W9XV1XTs2JGysjLMrNjlFIW7s2nTJqqrq+nZs2dOz1FTj4g0W1u3bqVz587Rhj6AmdG5c+dGfetR8ItIsxZz6Gc0dh0o+EVEIqPgF5EW56OPPuKCCy7gyCOPZMCAAQwZMoQ5c+YUu6wm+eqrrzjrrLPo27cvffv25dVXX93reTbbH3cHXD0zb/Oq/NVFeZuX7Pu07bRs7s5ZZ53FuHHjePTRRwFYt24d8+bNK3JlTbNz504mTZrEiBEjePbZZ7nuuut4/vnn92qe2uMXkRblhRdeoE2bNvzoRz+qGdejRw9++tOfsmPHDq6++moGDhxIv379uPfeewGYMGFCzQfDmDFjuOSSSwB48MEHue666wC46667ava6p06dCkBVVRW9evXi0ksvpU+fPowaNYotW7YAMHz4cK655hoGDRrEt771LRYtWgRQbw0LFy5k+PDhnH322Rx77LFceOGFuDvt2rVjxIgRQLL337Zt271eRwp+EWlRVq5cSf/+/et87IEHHqBTp068/vrrvP7669x///289957DB06tCaYP/jgA1atWgXAokWLGDZsGJWVlcyYMYNXX32VV155hfvvv5+lS5cCsGbNGiZMmMDKlSs56KCDeOqpp2qWt337dl577TWmTp3KDTfc0GANAEuXLmXq1KmsWrWKtWvXsnjx4pp5vf/++1x55ZVMnjx5r9eRgl9EWrQJEyZw/PHHM3DgQObPn8/MmTMpLy/nxBNPZNOmTaxZs6Ym+FetWkXv3r3p2rUr69ev5+WXX+akk07ixRdfZMyYMbRv354OHTowduzYmg+Knj17Ul5eDsCAAQOoqqqqWfbYsWN3G19fDQCDBg2iW7dutGrVivLy8l3mNWnSJK6//noqKir2ep002zZ+EZG69OnTZ5e97mnTpvHxxx9TUVFB9+7dueeeexg9evRuz/vrX//KM888w7Bhw9i8eTNPPPEEHTp0oGPHjg0ub//9968ZLikpqWnqyX6spKSE7du3A8lvEHXVsHDhwt3mlXkOwPLly2uahfaW9vhFpEU59dRT2bp1K9OnT68Z9+WXXwIwevRopk+fzrZt2wB45513+OKLLwAYPHgwU6dOZdiwYQwdOpQ77riDoUOHAjB06FDmzp3Ll19+yRdffMGcOXNqHmushmpoyJQpU+jUqVOTllmb9vhFpEUxM+bOncuVV17J7bffTmlpKe3bt+e2227jnHPOoaqqiv79++PulJaWMnfuXCAJ9/nz53P00UfTo0cPNm/eXBPu/fv35+KLL2bQoEEAjB8/nhNOOGGXpphcjR8/vt4aGjJ9+nSGDh1KmzZtGr3M2szd93omaauoqPDaF2LRIXnSVNp2Wo7Vq1fTq1evYpexT6hrXZhZpbvv9qOAmnpERCKj4BcRiYyCX0QkMgp+EZHIKPhFRCKj4BcRiYyO4xeRFiefh+zCng/b3bRpEyNHjgTgww8/pKSkhNLSUgBee+21vBx7n0+pBb+ZHQHMBLoCDtzn7neb2SHAbKAMqALOdfdP0qpDRCRtnTt3ZtmyZQBMnjyZDh06cNVVV+0yjbvj7rRqVfyGljQr2A78T3fvDQwGJphZb+AXwAJ3PwZYEO6LiLQ47777Lr179+bCCy+kT58+vP/++xx00EE1jz/++OOMHz8eSC4eM3bsWCoqKhg0aBCvvPJKanWltsfv7uuB9WH4MzNbDXwTOBMYHib7LbAQuCatOkREiumtt95i5syZVFRU7NLpWm0TJ07k5z//OYMHD6aqqorvfve7rFixIpWaCtLGb2ZlwAnAq0DX8KEA8CFJU5CISIt01FFH5dSV8vPPP8/bb79dc/+TTz5hy5YttGvXLu81pR78ZtYBeAr4mbv/Lftq8O7uZlZnZ0FmdhlwGUD37t3TLlNEJBXt27evGW7VqhXZ/aNt3bq1ZtjdC/ZDcKq/MphZa5LQf8Tdfx9Gf2Rmh4fHDwc21PVcd7/P3SvcvSLz67iISHPWqlUrDj74YNasWcPOnTt3uQD8aaedxrRp02ruZ34sTkOaR/UY8ACw2t3vynpoHjAOuDXc/iGtGkQkTvtyr6m33XYbo0ePpkuXLgwYMICvvvoKSC4Y8+Mf/5gZM2awfft2RowYscsHQT6l2dRzMvBPwJtmlvnoupYk8J8wsx8C64BzU6xBRKSgsq+Je/TRR++2537eeedx3nnn7fa80tJSnnzyybTLA9I9qudFwOp5eGRayxURkYYV/0wCEREpKAW/iEhkFPwiIpFR8IuIREbBLyISGXXLLCItzl9uPC6v8+v+yzf3OE1JSQnHHff1cufOnUtZWVmd06bdF8+eKPhFRPKgXbt2qZ5tm09q6hERSUlVVRVDhw6lf//+9O/fn5deemm3aVauXMmgQYMoLy+nX79+rFmzBoCHH364Zvzll1/Ojh078laXgl9EJA+2bNlCeXk55eXljBkzBoAuXbrw3HPP8ec//5nZs2czceLE3Z73m9/8hkmTJrFs2TKWLFlCt27dWL16NbNnz2bx4sUsW7aMkpISHnnkkbzVqqYeEZE8qKupZ9u2bVxxxRU14f3OO+/s9rwhQ4Zw8803U11dzdixYznmmGNYsGABlZWVDBw4EEg+VLp06ZK3WhX8IiIpmTJlCl27duWNN95g586dtG3bdrdpLrjgAk488UT++Mc/csYZZ3Dvvffi7owbN45bbrkllbrU1CMikpJPP/2Uww8/nFatWjFr1qw62+nXrl3LkUceycSJEznzzDNZvnw5I0eO5Mknn2TDhqTX+s2bN7Nu3bq81aU9fhFpcXI5/LIQfvKTn/D973+fmTNncvrpp+9yUZaMJ554glmzZtG6dWsOO+wwrr32Wg455BBuuukmRo0axc6dO2ndujXTpk2jR48eeanLsq8Gs6+qqKjwJUuW7DJuwNUz8zb/fbnvbsk/bTstx+rVq+nVq1exy9gn1LUuzKzS3Xe77qOaekREIqPgFxGJjIJfRJq15tBcnbbGrgMFv4g0W23btmXTpk1Rh7+7s2nTpjoPFa2PjuoRkWarW7duVFdXs3HjxmKXUlRt27alW7duOU+v4BeRZqt169b07Nmz2GU0O2rqERGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJjIJfRCQyqQW/mT1oZhvMbEXWuMlm9oGZLQt/Z6S1fBERqVuae/wPAafXMX6Ku5eHvz+luHwREalDasHv7v8BbE5r/iIi0jTFaOO/wsyWh6agg4uwfBGRqBU6+KcDRwHlwHrgzvomNLPLzGyJmS3ZuHFjoeoTEWnxChr87v6Ru+9w953A/cCgBqa9z90r3L2itLS0cEWKiLRwBQ1+Mzs86+4YYEV904qISDr2S2vGZvYYMBw41MyqgeuB4WZWDjhQBVye1vJFRKRuqQW/u59fx+gH0lqeiIjkRmfuiohERsEvIhIZBb+ISGQU/CIikUntx11p2ICrZ+ZtXpW/uihv8xKRlk97/CIikVHwi4hERsEvIhIZBb+ISGQU/CIikVHwi4hERsEvIhIZBb+ISGR0Apc0Wj5PPgOdgCZSaNrjFxGJjIJfRCQyOQW/mS3IZZyIiOz7GmzjN7O2wAEkl088GLDw0IHAN1OuTUREUrCnH3cvB34GfAOo5Ovg/xvw6xTrEhGRlDQY/O5+N3C3mf3U3e8pUE0iIpKinA7ndPd7zOwkoCz7Oe6e3+P6REQkdTkFv5nNAo4ClgE7wmgHFPwiIs1MridwVQC93d3TLEZERNKX63H8K4DD0ixEREQKI9c9/kOBVWb2GvBVZqS7/0MqVYmISGpyDf7JaRYhIiKFk+tRPf+ediEiIlIYuR7V8xnJUTwAbYDWwBfufmBahYmISDpy3ePvmBk2MwPOBAanVZSIiKSn0b1zemIuMDqFekREJGW5NvWMzbrbiuS4/q2pVCQiIqnK9aie72UNbweqSJp7RESkmcm1jf+/p12INN1fbjwub/Pq/ss38zYvEdk35Xohlm5mNsfMNoS/p8ysW9rFiYhI/uX64+4MYB5Jv/zfAP41jBMRkWYm1+AvdfcZ7r49/D0ElKZYl4iIpCTX4N9kZj8ws5Lw9wNgU5qFiYhIOnIN/kuAc4EPgfXA2cDFKdUkIiIpyvVwzhuBce7+CYCZHQLcQfKBICIizUiue/z9MqEP4O6bgRMaeoKZPRiOAFqRNe4QM3vOzNaE24ObVraIiDRVrsHfKjukwx7/nr4tPAScXmvcL4AF7n4MsCDcFxGRAsq1qedO4GUz+124fw5wc0NPcPf/MLOyWqPPBIaH4d8CC4FrcqxBRETyINczd2ea2RLg1DBqrLuvasLyurr7+jD8IdC1vgnN7DLgMoDu3bs3YVHSXOjMY2lOBlw9M2/zqvzVRXmbV2PkusdPCPqmhH1983Mzq/fi7e5+H3AfQEVFhS7yLiKSJ43ulnkvfWRmhwOE2w0FXr6ISPQKHfzzgHFheBzwhwIvX0QkeqkFv5k9BrwMfNvMqs3sh8CtwN+b2RrgtHBfREQKKOc2/sZy9/PreWhkWssUEZE9K3RTj4iIFJmCX0QkMgp+EZHIKPhFRCKj4BcRiYyCX0QkMgp+EZHIKPhFRCKj4BcRiYyCX0QkMgp+EZHIKPhFRCKTWidtIiJ1aQlXsGrutMcvIhIZBb+ISGQU/CIikVHwi4hERsEvIhIZBb+ISGQU/CIikVHwi4hERsEvIhIZnbkL/OXG4/I2r+6/fDNv8xIRSYP2+EVEIqPgFxGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJjIJfRCQyCn4RkcjoBC6RvaCT/2RvFGv70R6/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpEpyuGcZlYFfAbsALa7e0Ux6hARiVExj+Mf4e4fF3H5IiJRUlOPiEhkihX8Dsw3s0ozu6yuCczsMjNbYmZLNm7cWODyRERarmIF/ynu3h/4DjDBzIbVnsDd73P3CnevKC0tLXyFIiItVFGC390/CLcbgDnAoGLUISISo4IHv5m1N7OOmWFgFLCi0HWIiMSqGEf1dAXmmFlm+Y+6+zNFqENEJEoFD353XwscX+jliohIQodziohERsEvIhIZBb+ISGR06UURabZ06cum0R6/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpFR8IuIREbBLyISGQW/iEhkFPwiIpEpSvCb2elm9raZvWtmvyhGDSIisSp48JtZCTAN+A7QGzjfzHoXug4RkVgVY49/EPCuu6919/8CHgfOLEIdIiJRMncv7ALNzgZOd/fx4f4/ASe6+xW1prsMuCzc/TbwdoplHQp8nOL806b6i6c51w6qv9jSrr+Hu5fWHrlfigvcK+5+H3BfIZZlZkvcvaIQy0qD6i+e5lw7qP5iK1b9xWjq+QA4Iut+tzBOREQKoBjB/zpwjJn1NLM2wD8C84pQh4hIlAre1OPu283sCuBZoAR40N1XFrqOWgrSpJQi1V88zbl2UP3FVpT6C/7jroiIFJfO3BURiYyCX0QkMs0m+M1sh5ktM7M3zOzPZnZSDs/5PNyWmdkFWeMvNrNfp1lvY2S9thVm9jszOyDUvKKe6W80s9PC8EIzqwjDfzKzgwpZex21uZk9nHV/PzPbaGZPh/v/0FA3Hbm+7nzbU92NmE+Fmf1LGB6ey3a6t9JcL42V+Z9LYb572q4uDveXmdkqM7s0jToaw8y6mdkfzGyNmf2nmd1tZm3CdrHH7crMHjOz5WZ2Zb5r22eP46/DFncvBzCz0cAtwN/l+Nwy4ALg0XRKq5+Z7efu2/cwWfZrewT4EfD7+iZ291/WM/6MJheaP18Afc2snbtvAf6erMN13X0eTTyKq77XnScN1p2L8F4vAZaEUcOBz4GX8llobSmvl31FLu/PbHe/wsy6ACvNbJ67f1TwSgEzM5L/4enufmboquY+4Gbgjzk8/zBgoLsfnUZ9zWaPv5YDgU8AzKyDmS0I3wLeNLO6un+4FRga9gYyn57fMLNnwqfx7ZkJzWy6mS0xs5VmdkPW+FvDnsRyM7sjjPuemb1qZkvN7Hkz6xrGTzazWWa2GJjVyNe2CMi82SVmdn+oZb6ZtQvzfyicAb0LM6sys0PDXvNbZvaIma02syfN7ICsaW4P6+o1M0tjw/oT8N/C8PnAY1k11nzbMrOuZjYnfIt7I2vvuFGvu0B1H2Jmc8P7/4qZ9Qvjd3mvM3tzZlZG8gF+ZdjuMttf5m+LmeW645KpoSy8n7usm+z1YmYDzOzfzazSzJ41s8PD+IVmNiVs26vNbKCZ/T5s/zdlLWNueO5KS86ez4z/3MxuDu/TK1nbek8zezlsTzfVrjnP6n1/srn7BuA/gR4p19OQU4Gt7j4j1LQDuBK4BDggM5GZDQrrb6mZvWRm3w4PzQe+mdl28l6duzeLP2AHsAx4C/gUGBDG7wccGIYPBd7l66OVPg+3w4Gns+Z1MbAW6AS0BdYBR4THDgm3JcBCoB/QmaTLiMx8Dwq3B2eNGw/cGYYnA5VAuxxf2+dZr+UPwI9JvqVsB8rDY08APwjDDwFnh+GFQEUYrgrroAxw4OQw/kHgqqxprgvDF2Wvlzy9T5+HdfZkWLfLstd/WPe/DsOzgZ9lre9Oub7uFLavPdV9D3B9GD4VWFbXe13rOZMz673Wsr5H8gHfupE11rluMusFaE3y7aI0PH4eyeHSme3ktjA8Cfh/wOHA/kA10LnW9t8OWJE13oHvheHbgX8Ow/OAi8LwBMK2XIT3J3u7OhLYkHktxfgDJgJT6hi/NDyWqftAYL8wfBrwVNZ7vSKt+pprU88QYKaZ9QUM+D9mNgzYCXwT6Ap8uIf5LXD3T8P8VpHsHbwPnBv2dPYj+cfoDawCtgIPWNI2l2mf6wbMDntVbYD3suY/z5OvpLloZ2bLwvAi4AHgG8B77p4ZX0myMeTqfXdfHIYfJtnY7gj3H8u6ndKIeebE3ZeHPd7zSfbS6nMqyYcPnuwRfWpmB7N3r7vJ9lD3KcD3w3QvmFlnMzswPJbze21mxwC/Aka4+7YmlNnQuvk20Bd4zswg+TBdn/V4pontTWClu68PNa0lOZt+EzDRzMaE6Y4Ajgnj/4uvt/tKkqYWgJMJ64Xk2+1tTXhNOclhuzrPzE4BvgIud/fNadWSR52A34btwkk+vFPXnIK/hru/bGaHAqXAGeF2gLtvM7Mqkj2CPfkqa3gHsJ+Z9QSuImlb+8TMHgLaenLS2SBgJMme1RUkoXUPcJe7zzOz4SR7eBlfNOIl1XyoZYR/3No1tmvEPGufoOE5DOfTPJIPmuEk35gaY29e995qSt05vddm1oFkL/3STOg2QUPrxkgCfcgenruz1nx2kmz/w0n2Ooe4+5dmtpCv/5e2edgVDcvNzo5CngzU0Psz22t19lhEq0iyokbYUehO0ioxKoz+38C/ufuY8KG2sBDFNcs2fjM7lmRvZhPJJ+aGEPojqLtd7zOgYw6zPpDkn/jT0Ib5nbC8DkAnd/8TSTvd8WH6Tnz9A9O4Jr6ctHQP34wg+WH7xazHzsu6fTml5T8I3ODubzYwzQKSZi3MrMTMOqVUS2PUV/ci4EJIjtYBPnb3v+1hXrW3uweBGe6+KE+11vY2UJp5382stZn1acTzOwGfhNA/Fhicw3MWk3S7AmH9pCyX7WpfsAA4wMwugprrkNxJ0iz3ZdZ02RlycaGKa07B3y7zwxhJ2/C40DzwCFBhZm+SNBu8VcdzlwM7wg9T9R4a5e5vkLTBvUVyBFCmqaQj8LSZLScJ0P8Rxk8Gfmdmlex7XcO+DUwws9Ukv0VMz3rs4PBaJpF8kOWdu1e7+7/sYbJJwIjw3lWSNKsVVQN1TwYGhPV2K7l90P8rMCZst39Hsgd4SdYPvHntldGT61ucDdxmZm+QtIM35nDSZ0j2/FeTvMZXcnjOJJLt7E2SZtZU5bhdFV34djQGOMfM1gDvkDQXX1tr0tuBW8xsKQVsgVGXDS1Q+Mr4tLv3reOxKpIfg/e1DyoRKZDmtMcvIiJ5oD1+EZHIaI9fRCQyCn4Rkcgo+EVEIqPglyiZ2VmW9Ph4bLFrESk0Bb/E6nySczLOL3Yh2cKJPiKpUvBLdMKZ2KcAPyScdWpJr5oLLenJNNOzqYXHGtMza6mZPRd6t/y/ZrYudC+Cmf3Akh5Rl5nZvZmQDz1f3hlOuqqvuwWRvFHwS4zOBJ5x93eATWY2IIw/AfgZyRnERwInm1lnkjMw+7h7PyDT9fCLwGB3PwF4HPh5GH898IK79yHpSbI7gJn1Iuki4+TQL9MOvu7ioD3wqrsf7+7ZXWuIpKJZdtImspfOB+4Ow4+H+08Dr7l7NUDoGqSMpNuCxvTMegrJBwXu/oyZfRLGjwQGAK+HLxLtSLoOhuRD4Km8v0qReij4JSpmdghJz6rHmZmTdPbnJFdF2q3H1ib2zFrnooHfuvv/quOxraHfKZGCUFOPxOZsYJa793D3Mnc/gmRvvc6rHDWhZ9bFwLnhuaNIOsiDpLfGsy25LGDmil7FvEKUREzBL7E5H5hTa9xT1H90T2N7Zr0BGGXJBePPIbkg0Gfuvgr4Z2B+mNdzJBf6ESk49dUjkkdmtj+wIzQRDSG52Hb5np4nUkhq4xfJr+7AE2bWiuRyhZcWuR6R3WiPX0QkMmrjFxGJjIJfRCQyCn4Rkcgo+EVEIqPgFxGJzP8HOQS+8eqa+foAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"Ansager\", data=df_results, hue=\"gewonnen\")# [df_results.spieltyp==\"Wenz\"]\n",
"plt.legend(bbox_to_anchor=(1,1), title=\"Gewonnen?\")"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAVf0lEQVR4nO3de7hsdX3f8fdHQMUoCLJLkIvHpDwaNArlhGqwiniJ2hIkQS2pitWI7SMJGtM+VvNEtNqoEXkMtiRYELxEvCtSaqQoXoiXnKNHrhovwYpFOSpRMN44fvvH+m0YNnufM/uw1wyH3/v1PPuZNb9Zl++sWfsza9as9ZtUFZKkftxl3gVIkmbL4Jekzhj8ktQZg1+SOmPwS1JnDH5J6szOY804yd2BTwB3a8t5T1W9LMn9gXOB+wAbgWdU1c+2Nq+99tqr1q1bN1apknSntHHjxu9W1cLS9tGCH/gpcGRV3ZhkF+BTSf438EfAqVV1bpK/BJ4DnL61Ga1bt44NGzaMWKok3fkk+cZy7aMd6qnBje3uLu2vgCOB97T2c4Anj1WDJOm2Rj3Gn2SnJJuA64ALga8B/1hVN7VRrgH2HbMGSdKtjRr8VbWlqg4G9gMOAx447bRJTkiyIcmGzZs3j1ajJPVmJmf1VNU/Ah8DHg7cO8nidwv7Ad9aYZozqmp9Va1fWLjNdxOSpO00WvAnWUhy7za8K/A44CqGN4Bj22jHAx8cqwZJ0m2NeVbPPsA5SXZieIN5V1Wdn+RK4NwkrwS+AJw5Yg2SpCVGC/6quhQ4ZJn2rzMc75ckzYFX7kpSZwx+SerMmMf4R3Xof3rLvEtY1sY/f+a8S5CkrXKPX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHVmhz2dU9peH3/ko+ZdwrIe9YmPz7sEdcI9fknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SerMaMGfZP8kH0tyZZIrkpzU2k9O8q0km9rfk8aqQZJ0W2P+9OJNwIuq6vNJ7gVsTHJhe+zUqnrdiMuWJK1gtOCvqmuBa9vwDUmuAvYda3mSpOnM5MfWk6wDDgE+CxwOnJjkmcAGhk8F1y8zzQnACQAHHHDALMqcqf/7il+fdwnLOuBPL5t3CZJGNvqXu0nuCbwXeEFV/RA4HfhV4GCGTwSnLDddVZ1RVeurav3CwsLYZUpSN0YN/iS7MIT+26vqfQBV9Z2q2lJVvwDeBBw2Zg2SpFsb86yeAGcCV1XV6yfa95kY7Rjg8rFqkCTd1pjH+A8HngFclmRTa3sJcFySg4ECrgaeN2INkqQlxjyr51NAlnnogrGWKUnaNq/claTOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4JekzsykW2bduRx+2uHzLmFFl/zBJfMuQbrDc49fkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOjNa8CfZP8nHklyZ5IokJ7X2PZNcmOQr7XaPsWqQJN3WmHv8NwEvqqqDgIcBz09yEPBi4KKqOhC4qN2XJM3IaMFfVddW1efb8A3AVcC+wNHAOW20c4Anj1WDJOm2ZnKMP8k64BDgs8DeVXVte+jbwN4rTHNCkg1JNmzevHkWZUpSF0YP/iT3BN4LvKCqfjj5WFUVUMtNV1VnVNX6qlq/sLAwdpmS1I1Rgz/JLgyh//aqel9r/k6Sfdrj+wDXjVmDJOnWxjyrJ8CZwFVV9fqJh84Djm/DxwMfHKsGSdJt7TzivA8HngFclmRTa3sJ8GrgXUmeA3wDeOqINUiSlhgt+KvqU0BWePgxYy1XkrR1XrkrSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnZkq+JNcNE2bJOmOb6s/vZjk7sA9gL2S7MEtP6W4G7DvyLVJkkawrd/cfR7wAuC+wEZuCf4fAm8csS5J0ki2GvxV9QbgDUn+oKpOm1FNkqQRbWuPH4CqOi3JbwLrJqepqreMVJckaSRTBX+StwK/CmwCtrTmAgx+SdrBTBX8wHrgoKqqMYuRpDu6q1710XmXsKxfe+mRU4877Xn8lwO/vF3VSJLuUKbd498LuDLJ54CfLjZW1W+PUpUkaTTTBv/Jq51xkrOAfwNcV1UPbm0nA88FNrfRXlJVF6x23pKk7TftWT0f3455n81wrv/SL4BPrarXbcf8JElrYNqzem5gOIsH4K7ALsCPqmq3laapqk8kWXd7C5Qkra2pvtytqntV1W4t6HcFfhf4H9u5zBOTXJrkrNYNhCRphlbdO2cNPgD81nYs73SG6wEOBq4FTllpxCQnJNmQZMPmzZtXGk2StErTHur5nYm7d2E4r/8nq11YVX1nYp5vAs7fyrhnAGcArF+/3usHJGmNTHtWz1ETwzcBVwNHr3ZhSfapqmvb3WMYrg+QJM3QtGf1/PvVzjjJO4AjGLp0vgZ4GXBEkoMZvii+mqH3T0nSDE17qGc/4DTg8Nb0SeCkqrpmpWmq6rhlms9cdYWSpDU17Ze7bwbOY+iX/77Ah1qbJGkHM23wL1TVm6vqpvZ3NrAwYl2SpJFMG/zfS/L0JDu1v6cD3xuzMEnSOKYN/mcDTwW+zXD+/bHAs0aqSZI0omlP53wFcHxVXQ+QZE/gdQxvCJKkHci0e/wPWQx9gKr6PnDIOCVJksY0bfDfZbJfnbbHP+2nBUnSHci04X0K8Okk7273nwK8apySJEljmvbK3bck2QAs/qjj71TVleOVJUkay9SHa1rQG/aStINbdbfMkqQdm8EvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZr76VdjBvfNGH5l3Csk485ahtjwS86unHjlzJ9nnp294z7xJmxj1+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0ZLfiTnJXkuiSXT7TtmeTCJF9pt3tsbR6SpLU35h7/2cATlrS9GLioqg4ELmr3JUkzNFrwV9UngO8vaT4aOKcNnwM8eazlS5KWN+tj/HtX1bVt+NvA3iuNmOSEJBuSbNi8efNsqpOkDszty92qKqC28vgZVbW+qtYvLCzMsDJJunObdfB/J8k+AO32uhkvX5K6N+vgPw84vg0fD3xwxsuXpO6NeTrnO4BPAw9Ick2S5wCvBh6X5CvAY9t9SdIMjfbTi1V13AoPPWasZUqSts0rdyWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzuw8j4UmuRq4AdgC3FRV6+dRhyT1aC7B3zy6qr47x+VLUpc81CNJnZlX8BfwkSQbk5yw3AhJTkiyIcmGzZs3z7g8SbrzmlfwP6Kq/gXwROD5SR65dISqOqOq1lfV+oWFhdlXKEl3UnMJ/qr6Vru9Dng/cNg86pCkHs08+JP8UpJ7LQ4Djwcun3UdktSreZzVszfw/iSLy//rqvrwHOqQpC7NPPir6uvAQ2e9XEnSwNM5JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdWYuwZ/kCUm+nOSrSV48jxokqVczD/4kOwH/HXgicBBwXJKDZl2HJPVqHnv8hwFfraqvV9XPgHOBo+dQhyR1aR7Bvy/wzYn717Q2SdIMpKpmu8DkWOAJVfX77f4zgH9ZVScuGe8E4IR29wHAl0csay/guyPOf2zWPz87cu1g/fM2dv33q6qFpY07j7jAlXwL2H/i/n6t7Vaq6gzgjFkUlGRDVa2fxbLGYP3zsyPXDtY/b/Oqfx6Hev4OODDJ/ZPcFfi3wHlzqEOSujTzPf6quinJicDfADsBZ1XVFbOuQ5J6NY9DPVTVBcAF81j2CmZySGlE1j8/O3LtYP3zNpf6Z/7lriRpvuyyQZI6s8MEf5ItSTYl+WKSzyf5zSmmubHdrkvyexPtz0ryxjHrXY2J53Z5kncnuUer+fIVxn9Fkse24YuTrG/DFyS59yxrX6a2SvK2ifs7J9mc5Px2/7e31k3HtM97rW2r7lXMZ32Sv2jDR0yznd5eY66X1Vr8nxthvtvarp7V7m9KcmWS545Rx2ok2S/JB5N8JcnXkrwhyV3bdrHN7SrJO5JcmuSFa13bXI7xb6cfV9XBAEl+C/gz4FFTTrsO+D3gr8cpbWVJdq6qm7Yx2uRzezvwH4D3rTRyVf3pCu1P2u5C186PgAcn2bWqfgw8jonTdavqPLbzLK6Vnvca2Wrd02iv9QZgQ2s6ArgR+Nu1LHSpkdfLHcU0r887q+rEJP8MuCLJeVX1nZlXCiQJw//w6VV1dOuq5gzgVcD/mmL6XwZ+o6r++Rj17TB7/EvsBlwPkOSeSS5qnwIuS7Jc9w+vBv5V2xtYfPe8b5IPt3fj1y6OmOT0JBuSXJHk5RPtr257EpcmeV1rOyrJZ5N8Icn/SbJ3az85yVuTXAK8dZXP7ZPA4ou9U5I3tVo+kmTXNv+z24Vwt5Lk6iR7tb3mLyV5e5KrkrwnyT0mxnltW1efSzLGhnUB8K/b8HHAOyZqvPnTVpK9k7y/fYr74sTe8aqe94zq3jPJB9rr/5kkD2ntt3qtF/fmkqxjeAN/YdvuFre/xb8fJ5l2x2WxhnXt9bzVuplcL0kOTfLxJBuT/E2SfVr7xUlObdv2VUl+I8n72vb/yollfKBNe0WGiygX229M8qr2On1mYlu/f5JPt+3plUtrXmMrvj6Tquo64GvA/UauZ2uOBH5SVW9uNW0BXgg8G7jH4khJDmvr7wtJ/jbJA9pDHwH2Xdx21ry6qtoh/oAtwCbgS8APgENb+87Abm14L+Cr3PKl9Y3t9gjg/Il5PQv4OrA7cHfgG8D+7bE92+1OwMXAQ4D7MFw5vDjfe7fbPSbafh84pQ2fDGwEdp3yud048Vw+CPxHhk8pNwEHt8feBTy9DZ8NHNuGLwbWt+Gr2zpYBxRweGs/C/jjiXFe2oafOble1uh1urGts/e0dbtpcv23df/GNvxO4AUT63v3aZ/3CNvXtuo+DXhZGz4S2LTca71kmpMX1/uSZR3F8Aa/yyprXHbdLK4XYBeGTxcL7fGnMZwuvbidvKYNnwT8P2Af4G4M3abcZ8n2vytw+UR7AUe14dcCf9KGzwOe2YafT9uW5/D6TG5XvwJct/hc5vEH/CFw6jLtX2iPLda9G7BzG34s8N6J1/ryserbUQ/1PBx4S5IHAwH+W5JHAr9g6Pdnb+Db25jfRVX1gza/Kxn2Dr4JPLXt6ezM8I9xEHAl8BPgzAzH5haPz+0HvLPtVd0V+IeJ+Z9Xw0fSaeyaZFMb/iRwJnBf4B+qarF9I8PGMK1vVtUlbfhtDBvb69r9d0zcnrqKeU6lqi5te7zHsfXTdo9kePOhhj2iHyTZg9v3vLfbNup+BPC7bbyPJrlPkt3aY1O/1kkOBP4ceHRV/Xw7ytzaunkA8GDgwiQwvJleO/H44iG2y4ArquraVtPXGa6m/x7wh0mOaePtDxzY2n/GLdv9RoZDLQCH09YLw6fb12zHc5rKFNvV05I8Avgp8Lyq+v5Ytayh3YFz2nZRDG/eo9uRgv9mVfXpJHsBC8CT2u2hVfXzJFcz7BFsy08nhrcAOye5P/DHDMfWrk9yNnD3Gi46Owx4DMOe1YkMoXUa8PqqOi/JEQx7eIt+tIqndPOb2qL2j7u0xl1XMc+l5+nWFMNr6TyGN5ojGD4xrcbted631/bUPdVrneSeDHvpz10M3e2wtXUThkB/+Dam/cWS+fyCYfs/gmGv8+FV9U9JLuaW/6WfV9sVbcudzI5ZnhO+tdfnnbWkz685upIhK27WdhQOYDgq8fjW/F+Bj1XVMe1N7eJZFLdDHuNP8kCGvZnvMbxjXtdC/9Esf1zvBuBeU8x6N4Z/4h+0Y5hPbMu7J7B7DReevRB4aBt/d275gun47Xw6YzmgfTKC4YvtT0089rSJ20+PtPyzgJdX1WVbGecihsNaJNkpye4j1bIaK9X9SeDfwXC2DvDdqvrhNua1dLs7C3hzVX1yjWpd6svAwuLrnmSXJA9axfS7A9e30H8g8LApprmEodsVaOtnZNNsV3cEFwH3SPJMuPl3SE5hOCz3TxPjTWbIs2ZV3I4U/LsufjHGcGz4+HZ44O3A+iSXMRw2+NIy014KbGlfTK14alRVfZHhGNyXGM4AWjxUci/g/CSXMgToH7X2k4F3J9nIHa+HwC8Dz09yFcN3EadPPLZHey4nMbyRrbmquqaq/mIbo50EPLq9dhsZDqvN1VbqPhk4tK23VzPdG/2HgGPadvsohj3AZ098wbumnXPV8PsWxwKvSfJFhuPgqzmd9MMMe/5XMTzHz0wxzUkM29llzKB79Sm3q7lrn46OAZ6S5CvA3zMcLn7JklFfC/xZki8wwyMwXrl7J9Q+Mp5fVQ9e5rGrGb4MvqO9UUmakR1pj1+StAbc45ekzrjHL0mdMfglqTMGvyR1xuBXl5I8OUOPjw+cdy3SrBn86tVxDNdkHDfvQia1C32kURn86k67EvsRwHNoV51m6FXz4gw9mS72bJr22Gp6Zl1IcmHr3fJ/JvlG616EJE/P0CPqpiR/tRjyrefLU9pFVyt1tyCtGYNfPToa+HBV/T3wvSSHtvZDgBcwXEH8K8DhSe7DcAXmg6rqIcBi18OfAh5WVYcA5wL/ubW/DPhoVT2IoSfJAwCS/BpDFxmHt36ZtnBLFwe/BHy2qh5aVZNda0ij2CE7aZNup+OAN7Thc9v984HPVdU1AK1rkHUM3RaspmfWRzC8UVBVH05yfWt/DHAo8Hftg8SuDF0Hw/Am8N41f5bSCgx+dSXJngw9q/56kmLo7K8YfhXpNj22bmfPrMsuGjinqv7LMo/9pPU7Jc2Eh3rUm2OBt1bV/apqXVXtz7C3vuyvHG1Hz6yXAE9t0z6eoYM8GHprPDbDzwIu/qLXPH8hSh0z+NWb44D3L2l7Lyuf3bPanllfDjw+ww/GP4XhB4FuqKorgT8BPtLmdSHDD/1IM2dfPdIaSnI3YEs7RPRwhh/bPnhb00mz5DF+aW0dALwryV0Yfq7wuXOuR7oN9/glqTMe45ekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0md+f/dRn+e6176XwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"Ansager\", data=df_results)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Balthasar': 128,\n",
" 'Michi': 112,\n",
" 'Moritz': 116,\n",
" 'MP': 44,\n",
" 'Olaf': 88,\n",
" 'Philipp': 92,\n",
" 'Sonja': 4}"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n_spiele = {}\n",
"for sp in spieler:\n",
" #print(sp)\n",
" n_spiele[sp] = (df_results.spieler0==sp).sum()+(df_results.spieler1==sp).sum()+(df_results.spieler2==sp).sum()+(df_results.spieler3==sp).sum()\n",
"n_spiele"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"n_ansagen = []\n",
"for sp in spieler:\n",
" n_ansagen.append((df_results.Ansager == sp).sum()/n_spiele[sp])"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Anteil gespielte Spiele angesagt')"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAD4CAYAAAD2FnFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAciklEQVR4nO3deZwdVZ338c93guyCYOI4T6BJwAiCQIAGZBmQTfEZCMKALKKojBEVxXXEZQLEARH1EWWTKEFEZFFHaDCyCgwoSDoQCAkgISok8oxsBpA14Td/1GkortW3T3e6ujqd7/v1uq++dapO3d9d+v7uOVXnlCICMzOzVv/QdABmZjY8OUGYmVklJwgzM6vkBGFmZpWcIMzMrNJKTQcwWEaPHh3jxo1rOgwzs+XKrFmzHo2IMVXrRkyCGDduHN3d3U2HYWa2XJH0p97WuYvJzMwqOUGYmVklJwgzM6vkBGFmZpWcIMzMrJIThJmZVXKCMDOzSk4QZmZWyQnCzMwqjZiR1GaD7cZddm06hEq7/veNTYdQuxMPP7DpEHr15R//rOkQhoxbEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVak0QkvaWdJ+k+ZKOrVj/GUnzJN0l6TpJG5TWLZU0O9266ozTzMz+Xm3TfUsaBZwB7AUsBGZK6oqIeaXN7gA6I+IZSR8FTgEOTuuejYiJdcVnZmbt1dmC2A6YHxELIuIF4CJgv/IGEXF9RDyTFm8F1qsxHjMz64c6E8RY4KHS8sJU1psjgV+VlleV1C3pVknvrqogaXLapvuRRx5Z9ojNzOxlw+KKcpIOBzqB8iW8NoiIRZI2BH4taU5EPFCuFxHTgGkAnZ2dMWQBm5mtAPpsQUgan1NWYRGwfml5vVTWuq89gS8DkyLi+Z7yiFiU/i4AbgC2ynhMMzMbJDldTD+vKMu5KOtMYIKk8ZJWBg4BXnU2kqStgLMpksNfSuXrSFol3R8N7ASUD26bmVnNeu1ikrQJsBmwtqQDSqvWAlbta8cRsUTS0cBVwChgekTMlTQV6I6ILuAbwJrATyUBPBgRk4C3AGdLeokiiZ3ccvaTmZnVrN0xiI2BfYDXAfuWyp8CPpyz84iYAcxoKZtSur9nL/V+C2ye8xhmZlaPXhNERFwGXCZph4i4ZQhjMjOzYSDnLKbDJB3aUraYopvoshpishFip9N2ajqESr/5xG+aDsFsuZBzkHoVYCJwf7ptQXFG0pGSTq0xNjMza1BOC2ILYKeIWAog6SzgJmBnYE6NsZmZWYNyWhDrUJxp1GMNYN2UMJ6vrmJmZsu7nBbEKcBsSTcAAnYBTpK0BnBtjbGZmVmD+kwQEXGOpBkUk+8BfCki/pzuf762yMzMrFG5k/U9BzwMPAG8SdIu9YVkZmbDQZ8tCEn/BhxDcebSbOBtwC3A7vWGZmZmTcppQRwDbAv8KSJ2o5g076+1RmVmZo3LSRDPRcRzAJJWiYh7KabhMDOzESznLKaFkl4HXApcI+kJ4E/1hmVmZk3LOYtp/3T3eEnXA2sDV9Ya1SDZ5vM/ajqESrO+8f6mQzAz61POBYM26rk2A8U4iHHA6nUGZWZmzcu9YNBSSW+iuLzn+sBPao3KzMwal5MgXoqIJcD+wGkR8Xngn+oNy8zMmpaTIF5M030fAVyRyl5TX0hmZjYc5CSIDwI7ACdGxB8kjQfOrzcsMzNrWs5ZTPMkfQHoSMt/AL5ed2BmZtasnLOY9qWYYuPKtDxRUlfdgZmZWbNyupiOp5jJ9a8AETEb2LDGmMzMbBjIOkgdEYtbyl6qIxgzMxs+cqbamCvpMGCUpAnAJ4Hf1huWmZk1LacF8QlgM4rLi14IPAl8qs6gzMyseTlnMT0DfDndzMxsBZFzwaDLgWgpXgx0A2f3TAVuZmYjS04X0wLgaeD76fYk8BTw5rRsZmYjUM5B6h0jYtvS8uWSZkbEtpLm1hWYmZk1KydBrCmpIyIeBJDUAayZ1r1QW2TGg1M3bzqESh1T5jQdgpkNgZwups8CN0u6XtINwE3A5yStAZzXrqKkvSXdJ2m+pGMr1n9G0jxJd0m6TtIGpXVHSLo/3Y7o39MyM7NllXMW04w0/mGTVHRf6cD0qb3VkzQKOAPYC1gIzJTUFRHzSpvdAXRGxDOSPgqcAhwsaV3gOKCT4gD5rFT3iX4+PzMzG6CcFgTANhRjIbYE3iMp55qZ2wHzI2JBRLwAXATsV94gIq5Pp9EC3Aqsl+6/E7gmIh5PSeEaYO/MWM3MbBDknOZ6PrARxYR9S1NxAH1d8Hks8FBpeSGwfZvtjwR+1abu2IrYJgOTATo6OvoIx8zM+iPnIHUnsGlEtI6FGDSSDk+Ps2t/6kXENIrLoNLZ2VlbfGZmK6KcLqa7gTcOYN+LKK5f3WO9VPYqkvakGKU9KSKe709dMzOrT04LYjQwT9JtFPMxARARk/qoNxOYkK5Atwg4BDisvIGkrYCzgb0j4i+lVVcBJ0laJy2/A/hiRqxmZjZIchLE8QPZcUQskXQ0xZf9KGB6RMyVNBXojogu4BsUYyp+KgngwYiYFBGPS/oqRZIBmBoRjw8kDjMzG5ic01xvHOjOI2IGMKOlbErp/p5t6k4Hpg/0sc3MbNnkXHL0bZJmSnpa0guSlkp6ciiCMzOz5uQcpD4dOBS4H1gN+DeKAXBmZjaCZQ2Ui4j5wKiIWBoR5+JBa2ZmI17OQepnJK0MzJZ0CvAw+SOwzcxsOZXzRf++tN3RwN8oxif8a51BmZlZ83LOYvpTuvsccEK94ZiZ2XDhriIzM6vkBGFmZpVyDlIDIGn10tTcZjbMnf7Zy5sOodLR39q36RAsU85AuR0lzQPuTctbSjqz9sjMzKxROV1M36a4gM9jABFxJ7BLnUGZmVnzcgfKPdRStLRyQzMzGzFyjkE8JGlHICS9BjgGuKfesMzMrGk5LYijgI9TXPJzETAxLZuZ2QiWM1DuUeC9QxCLmZkNI70mCEmnAb1e5zkiPllLRGZmNiy0a0F0D1kUZmY27PSaICLivPKyB8qZma1YcgbK7eCBcmZmK56cs5hOxQPlzMxWOB4oZ2ZmlTxQzszMKnmgnJmZVfJAOTMzq9RuoNy/R8QpvQ2Y80A5M7ORrV0Louc4gwfMmZmtgNoNlLs8/T0PQNJaxWI8NUSxmZlZg3IGynVKmgPcBdwt6U5J29QfmpmZNSnnNNfpwMci4iYASTsD5wJb1BmYmZk1K+c016U9yQEgIm4GluTsXNLeku6TNF/SsRXrd5F0u6Qlkg5sWbdU0ux068p5PDMzGzw5LYgbJZ0NXEhxNtPBwA2StgaIiNurKkkaBZwB7AUsBGZK6oqIeaXNHgQ+AHyuYhfPRsTE3CdiZmaDKydBbJn+HtdSvhVFwti9l3rbAfMjYgGApIuA/YCXE0RE/DGteyk/ZDMzGwo5A+V2G+C+xwLlOZwWAtv3o/6qkropurNOjohLWzeQNBmYDNDR0THAMM3MrEqvxyAk7Stpg9LylHQGU5ek8UMQ2wYR0QkcBpwqaaPWDSJiWkR0RkTnmDFjhiAkM7MVR7uD1CcCjwBI2gc4HPgQ0AV8L2Pfi4D1S8vrpbIsEbEo/V0A3EDRpWVmZkOkXYKI0hXkDgDOiYhZEfEDIOfn+kxggqTxklYGDqFILn2StI6kVdL90cBOlI5dmJlZ/dolCElaU9I/AHsA15XWrdrXjiNiCXA0cBXFtB2XRMRcSVMlTUoPsK2khcBBwNmS5qbqbwG6Jd0JXE9xDMIJwsxsCLU7SH0qMBt4ErgnIroBJG0FPJyz84iYAcxoKZtSuj+Touuptd5vgc1zHsPMzOrRbi6m6ZKuAt4A3Fla9f+BD9YdmJmZNavtaa7pQPGilrKs1oOZmS3fsq5JbWZmKx4nCDMzq5SVICTtLOmD6f6YIRooZ2ZmDcq5HsRxwBeAL6ai1wA/rjMoMzNrXk4LYn9gEvA3gIj4M/DaOoMyM7Pm5SSIFyIiKGZuRdIa9YZkZmbDQU6CuCRdD+J1kj4MXAv8oN6wzMysaTnTfX9T0l4UI6o3BqZExDW1R2ZmZo3qM0FI+npEfAG4pqLMzMxGqJwupr0qyt412IGYmdnw0msLQtJHgY8BG0q6q7TqtcBv6g7MzMya1a6L6SfAr4CvAceWyp+KiMdrjcrMzBrXLkGMojgw/fHWFZLWdZIwMxvZ2iWIWaSxD4Ba1gWwYS0RmZnZsNDuehCeb8nMbAWWMxeTJB0u6T/Scoek7eoPzczMmpRzmuuZwA7AYWn5KeCM2iIyM7Nhoc+BcsD2EbG1pDsAIuIJSSvXHJeZmTUspwXxoqRRvDJZ3xjgpVqjMjOzxuUkiO8CvwDeIOlE4GbgpFqjMjOzxuVM1neBpFnAHhSnu747Iu6pPTIzM2tUu6k21oqIJyWtC/wFuLC0zgPlzMxGuL6m2tiHVwbMlQfLeaCcmdkI126g3D7prwfMmZmtgHJOc0XSAcDOFC2HmyLi0lqjMjOzxuWMpD4TOAqYA9wNHCXJA+XMzEa4nBbE7sBbIqJnHMR5wNxaozIzs8bljIOYD3SUltdPZX2StLek+yTNl3RsxfpdJN0uaYmkA1vWHSHp/nQ7IufxzMxs8OS0IF4L3CPptrS8LdAtqQsgIiZVVUqjr8+guGTpQmCmpK6ImFfa7EHgA8DnWuquCxwHdFIc95iV6j6R+8TMzGzZ5CSIKQPc93bA/IhYACDpImA/4OUEERF/TOtap+54J3BNz1gLSdcAe1Mai2FmZvXKSRDdwLMR8ZKkNwObAL+KiBf7qDcWeKi0vBDYPjOuqrpjWzeSNBmYDNDR0dG62szMlkHOMYj/BlaVNBa4Gngf8MM6g8oVEdMiojMiOseMGdN0OGZmI0pOglBEPAMcAJwZEQcBb82ot4jigHaP9VJZjmWpa2ZmgyArQUjaAXgv8Mt+1JsJTJA0Pl0/4hCgKzOuq4B3SFpH0jrAO1KZmZkNkZwv+k8BXwR+ERFzJW0IXN9XpYhYAhxN8cV+D3BJqj9V0iQASdtKWggcBJwtaW6q+zjwVYokMxOY6skBzcyGVs503zcCN0paPS0vAD6Zs/OImAHMaCmbUro/k6L7qKrudGB6zuOYmdngy5lqYwdJ84B70/KWafoNMzMbwXK6mE6lGJfwGEBE3AnsUmdQZmbWvJwEQUQ81FK0tIZYzMxsGMkZKPeQpB2BkPQa4BiKg85mZjaC5bQgjgI+TjGSeREwMS2bmdkIlnMW06MUYyDMzGwF0meCkPTdiuLFQHdEXDb4IZmZ2XCQ08W0KkW30v3ptgXF2IUjJZ1aY2xmZtagnIPUWwA7RcRSAElnATdRXKN6To2xmZlZg3JaEOsAa5aW1wDWTQnj+VqiMjOzxuW0IE4BZku6ARDFILmTJK0BXFtjbGZm1qCcs5jOkTSD4gpxAF+KiD+n+5+vLTIzM2tUTguCiHgY8BlLZmYrkKypNszMbMXjBGFmZpV67WKStG67ir6Aj5nZyNbuGMQsICjOXGoVwIa1RGRmZsNCrwkiIsYPZSBmZja8tOti2iQi7pW0ddX6iLi9vrDMzKxp7bqYPgNMBr5VsS6A3WuJyMzMhoV2XUyT09/dhi4cMzMbLvo8zVXS6pK+ImlaWp4gaZ/6QzMzsybljIM4F3gB2DEtLwL+s7aIzMxsWMhJEBtFxCnAiwAR8QzVp76amdkIkpMgXpC0GsWBaSRthKf5NjMb8XIm6zseuBJYX9IFwE7AB+sMyszMmpcz3ffVkmYBb6PoWjomIh6tPTIzM2tUzllM10XEYxHxy4i4IiIelXTdUARnZmbNaTeSelVgdWC0pHV45cD0WsDYIYjNzMwa1K4F8RGKCfs2SX97bpcBp+fsXNLeku6TNF/SsRXrV5F0cVr/O0njUvk4Sc9Kmp1u3+vf0zIzs2XVbiT1d4DvSPpERJzW3x1LGgWcAewFLARmSuqKiHmlzY4EnoiIN0k6BPg6cHBa90BETOzv45qZ2eDIOUh9mqQdgXHl7SPiR31U3Q6YHxELACRdBOwHlBPEfhRnSQH8DDhdksdYmJkNA30mCEnnAxsBs4GlqTiAvhLEWOCh0vJCYPvetomIJZIWA69P68ZLugN4EvhKRNxUEdtkigkF6ejo6OupmJlZP+SMg+gENo2IqDuYkoeBjoh4TNI2wKWSNouIJ8sbRcQ0YBpAZ2fnUMZnZjbi5Yykvht44wD2vQhYv7S8Xiqr3EbSSsDawGMR8XxEPAYQEbOAB4A3DyAGMzMboJwWxGhgnqTbKE2xERGT+qg3E5ggaTxFIjgEOKxlmy7gCOAW4EDg1xERksYAj0fEUkkbAhOABTlPyMzMBkfuVBv9lo4pHA1cBYwCpkfEXElTge6I6ALOAc6XNB94nCKJAOwCTJX0IvAScFREPD6QOMzMbGByzmK6sbwsaWfgUODG6hqvqjsDmNFSNqV0/zngoIp6Pwd+3tf+zcysPjktCCRtRdE9dBDwB/zlbWY24rWbauPNFC2FQ4FHgYsB+RKkZmYrhnYtiHuBm4B9ImI+gKRPD0lUZmbWuHanuR5AMR7heknfl7QHvpKcmdkKo9cEERGXRsQhFJP1XQ98CniDpLMkvWOoAjQzs2b0OVAuIv4WET+JiH0pBrvdAXyh9sjMzKxROSOpXxYRT0TEtIjYo66AzMxseOhXgjAzsxWHE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZJScIMzOr5ARhZmaVnCDMzKySE4SZmVVygjAzs0pOEGZmVskJwszMKjlBmJlZpVoThKS9Jd0nab6kYyvWryLp4rT+d5LGldZ9MZXfJ+mddcZpZmZ/r7YEIWkUcAbwLmBT4FBJm7ZsdiTwRES8Cfg28PVUd1PgEGAzYG/gzLQ/MzMbInW2ILYD5kfEgoh4AbgI2K9lm/2A89L9nwF7SFIqvygino+IPwDz0/7MzGyIrFTjvscCD5WWFwLb97ZNRCyRtBh4fSq/taXu2NYHkDQZmJwWn5Z03+CEXmk08Ohg7EjfPGIwdtNfgxY/x2lQdtNPg/f6f3L5jh8t3/F/4v8Nxl76bdDi/8oFQ/76D95np9oGva2oM0HULiKmAdOG4rEkdUdE51A8Vh0cf7Mcf7OW5/ibjL3OLqZFwPql5fVSWeU2klYC1gYey6xrZmY1qjNBzAQmSBovaWWKg85dLdt0AT39LQcCv46ISOWHpLOcxgMTgNtqjNXMzFrU1sWUjikcDVwFjAKmR8RcSVOB7ojoAs4Bzpc0H3icIomQtrsEmAcsAT4eEUvrijXTkHRl1cjxN8vxN2t5jr+x2FX8YDczM3s1j6Q2M7NKThBmZlZpRCUISUslzZZ0p6TbJe2YUefp9HecpMNK5R+QdHqd8S4LSSHpx6XllSQ9IumKtDypanqT0vbjJN3dy7qpkvYc/Kj7jrsf++mU9N10/+057/VQyHhfPpCWZ0uaJ+nDzUX7cozrSbpM0v2SHpD0HUkrp9e1z/dF0oWS7pL06Rpj7PnfvlvSTyWtnvsZlnSDpM50f4ak19UVZw5JX5Y0N71msyW1jg/L2Ufb/+/BslyPg6jwbERMBEjzN30N2DWz7jjgMOAn9YTWO0krRcSSflb7G/BWSatFxLPAXpROBU4nAbSeNZYlIqYMpF6mtnHnSK9XN9Cdit4OPA38djADHaCc53dxRBwt6Q3AXEldEfE/Qx4pkGYu+C/grIjYL01pMw04EfhlRv03Atum6XLqVP7fvgA4iiLuSr19hiPi/9YTXh5JOwD7AFtHxPOSRgMr93c/y/L/3R8jqgXRYi3gCQBJa0q6LrUq5khqnfID4GTgn1NG7/kl9H8kXZl+WZ3Ss6GksyR1p18BJ5TKT06/Cu+S9M1Utq+KiQjvkHStpH9M5cdLOl/Sb4DzB/gcZwD/ku4fClxYiuXlFpCkf5T0i9SyurP0a3uUpO+n53G1pNXS9j+UdOAAY1rWuNeVdGl6DW+VtEUqf9Xr1fPrVsUEj0cBn07vXc972HN7VlLuj4TB0uvzK4uIvwAP0GYk6xDYHXguIs5NMS0FPg18CFi9ZyNJ20m6JX2Ofytp47TqamBsz2s/RDHfBPQkpH59hiX9UdLo1Pq4V9IFku6R9DNJq5e2OSV9V9wmaTCT3z8Bj0bE8wAR8WhE/FnSHum1nSNpuqRVSrGcUPru2iSVl/+/K79jBsNISxCrpQ/qvcAPgK+m8ueA/SNia2A34Fvpl1PZscBNETExIr6dyiYCBwObAwdL6hm89+U0snELYFdJW0h6PbA/sFlEbAH8Z9r2ZuBtEbEVxXxU/156zE2BPSPi0AE+34soxousmmL5XS/bfRe4MSK2BLYG5qbyCcAZEbEZ8FfgXwcYR3+1i/sE4I70Gn4J+FFp3d+9XhHxR+B7wLfTe9fzHk4E/oOilTHULYus90XShsCGFHONNWUzYFa5ICKeBB7klS9hgHuBf06f4ynASal8EvBAz2tfd7AqBtS+C5iTipblM7wxcGZEvAV4EvhYad3iiNgcOB04dZkDf8XVwPqSfi/pTEm7ps/JD4GD02OuBHy0VOfR9N11FvC5in22+45ZJiMtQTybPqibUMwC+6OUCAScJOku4FqKeZ1ysux1EbE4Ip6jGJPR80vvPZJuB+6g+AfbFFhMkYjOkXQA8Ezadj3gKklzgM+n7Xt0pW6IAYmIuyi6xg6l+NXam90pPlxExNKIWJzK/xARs9P9WWlftesj7p1JLaqI+DXweklrpXXZr5ekCcA3gPdExIuDEXeujPflYEmzKVoWH4mIx4cwvIFaG/ipij7/b/Pqz/FQWC29Zt0UyeucVL4sn+GHIuI36f6PKT57PS4s/d1hQBFXiIingW0o5pB7BLgY+AjF8/h92uw8YJdStZ6utN6eX7vvmGUy0hLEyyLiFopJrsYA701/t0m/LP8HWDVjN8+X7i8FVlIxsvtzwB7pV+4vgVXTMYTtKGal3Qe4MtU7DTg9/TL4SMvj/m2AT6+sC/gmvXRj9OHvnt8gxJNrIHFnvV6S1gQuAT4cEQ8PILbB0O75XZx+yGwfEb8Y4rhazaP4wnpZSsgdvLpl81Xg+oh4K7Avef8/g6nnx9/EiPhEmiEalu0z3DoILDLuL7P0I+2GiDgOOBp4dx9Vep5jb8+v3XfMMhmxCSL11Y2imNtpbeAvEfGipN2o7vN9Cnhtxq7XoviiWpz6+t6VHm9NYO2ImEHRh7tl2n5tXjlIWcc0rtOBEyJiTpttriM1WSWNkrR2DXH0V29x30SR0JH0dorm9ZN97Kv1vZsOnDsUXR5t5Lwvw8F1wOqS3g8vX8flWxRdHs+Utit/jj8whPHVqUPFQWMoTlC5ubTu4NLfWwbrASVtnFq3PSZSHIcaVzrW8T7gxn7strbvmJGWIHqOQcymaLodkQ66XQB0pibY+yn6U1vdBSxNB3F7PV0vIu6k6Fq6l+KMp54m6muBK1I31s3AZ1L58RRN81nUMGVvRCyMiO/2sdkxwG7p+c+i6BJrVJu4jwe2Sa/jyeR94C8H9k/v/a4U83p9qHSgeshnwsx8XxqX5j7bHzhI0v3A7ym6Sr/UsukpwNck3cHIOfvxPuDjku4B1iF1wybrpM/gMRQ/+AbLmsB5SiezUPwvHgt8kOJ7Yg7wEsVxtb70tGyOp6bvGE+1YWYrnHT22xWpy6x13R+Bzoio8xoMy0TSZ4G1UjdVbUbKLwEzsxWCpKMouvkOqP2x3IIwM7MqI+0YhJmZDRInCDMzq+QEYWZmlZwgzMyskhOEmZlV+l9OkA6ReJgwbwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(x=spieler, y=n_ansagen)\n",
"plt.ylabel(\"Anteil gespielte Spiele angesagt\")"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [],
"source": [
"def minutes(x):\n",
" return \"{:02d}:{:02d}\".format(int(x//60), int(x%60))\n",
"#df_results[\"spieldauer\"] = (df_results.endzeit-df_results.startzeit).apply(minutes)"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Ansager \n",
" spieltyp \n",
" farbe \n",
" Balthasar \n",
" Michi \n",
" Moritz \n",
" MP \n",
" Olaf \n",
" Philipp \n",
" Sonja \n",
" spieldauer \n",
" \n",
" \n",
" \n",
" \n",
" 138 \n",
" Michi \n",
" Sauspiel \n",
" Gras \n",
" -30 \n",
" 30 \n",
" - \n",
" 30 \n",
" - \n",
" - \n",
" -30 \n",
" 02:56 \n",
" \n",
" \n",
" 139 \n",
" MP \n",
" Sauspiel \n",
" Eichel \n",
" -60 \n",
" 60 \n",
" - \n",
" 60 \n",
" - \n",
" - \n",
" -60 \n",
" 03:18 \n",
" \n",
" \n",
" 140 \n",
" Olaf \n",
" Sauspiel \n",
" Gras \n",
" 40 \n",
" -40 \n",
" - \n",
" - \n",
" -40 \n",
" 40 \n",
" - \n",
" 04:06 \n",
" \n",
" \n",
" 141 \n",
" Philipp \n",
" Sauspiel \n",
" Gras \n",
" 20 \n",
" -20 \n",
" - \n",
" - \n",
" 20 \n",
" -20 \n",
" - \n",
" 03:52 \n",
" \n",
" \n",
" 142 \n",
" Balthasar \n",
" Sauspiel \n",
" Gras \n",
" 140 \n",
" -140 \n",
" - \n",
" - \n",
" 140 \n",
" -140 \n",
" - \n",
" 02:41 \n",
" \n",
" \n",
" 144 \n",
" Philipp \n",
" Sauspiel \n",
" Schelln \n",
" -70 \n",
" 70 \n",
" - \n",
" - \n",
" -70 \n",
" 70 \n",
" - \n",
" 03:59 \n",
" \n",
" \n",
" 145 \n",
" Olaf \n",
" Sauspiel \n",
" Schelln \n",
" -60 \n",
" 60 \n",
" - \n",
" - \n",
" 60 \n",
" -60 \n",
" - \n",
" 02:56 \n",
" \n",
" \n",
" 146 \n",
" Olaf \n",
" Wenz \n",
" keine \n",
" 140 \n",
" 140 \n",
" - \n",
" - \n",
" -420 \n",
" 140 \n",
" - \n",
" 09:00 \n",
" \n",
" \n",
" 147 \n",
" Balthasar \n",
" Wenz \n",
" keine \n",
" 240 \n",
" -80 \n",
" - \n",
" - \n",
" -80 \n",
" -80 \n",
" - \n",
" 03:28 \n",
" \n",
" \n",
" 148 \n",
" Olaf \n",
" Sauspiel \n",
" Gras \n",
" -40 \n",
" 40 \n",
" - \n",
" - \n",
" 40 \n",
" -40 \n",
" - \n",
" 03:59 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Ansager spieltyp farbe Balthasar Michi Moritz MP Olaf Philipp \\\n",
"138 Michi Sauspiel Gras -30 30 - 30 - - \n",
"139 MP Sauspiel Eichel -60 60 - 60 - - \n",
"140 Olaf Sauspiel Gras 40 -40 - - -40 40 \n",
"141 Philipp Sauspiel Gras 20 -20 - - 20 -20 \n",
"142 Balthasar Sauspiel Gras 140 -140 - - 140 -140 \n",
"144 Philipp Sauspiel Schelln -70 70 - - -70 70 \n",
"145 Olaf Sauspiel Schelln -60 60 - - 60 -60 \n",
"146 Olaf Wenz keine 140 140 - - -420 140 \n",
"147 Balthasar Wenz keine 240 -80 - - -80 -80 \n",
"148 Olaf Sauspiel Gras -40 40 - - 40 -40 \n",
"\n",
" Sonja spieldauer \n",
"138 -30 02:56 \n",
"139 -60 03:18 \n",
"140 - 04:06 \n",
"141 - 03:52 \n",
"142 - 02:41 \n",
"144 - 03:59 \n",
"145 - 02:56 \n",
"146 - 09:00 \n",
"147 - 03:28 \n",
"148 - 03:59 "
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_results.filter(niceColumns).fillna(\"-\").tail(10)"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"with open(\"spiele.html\", \"w\") as f:\n",
" f.write(df_results.filter(niceColumns).fillna(\"-\").to_html())\n",
"with open(\"spiele.csv\", \"w\") as f:\n",
" f.write(df_results.filter(niceColumns).fillna(\"-\").to_csv())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 104,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8.952777777777778"
]
},
"execution_count": 104,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"(df_results.endzeit-df_results.startzeit).sum()/3600"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 110,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxc9Xnv8c8zo33fd9mS5VXGG8g2eygQYgKxaUoStpYUWkoSmrZpbgvNfSUtvUnTpDdNc0OaQEI2QihL0jjElACBsBgby2Ab75Zt2ZIsWZK175qZ5/6hsTMRsj2SZnRmRs/79dLLc7aZZ0Dz1W9+53d+R1QVY4wxscvldAHGGGPCy4LeGGNinAW9McbEOAt6Y4yJcRb0xhgT4+KcLmC8vLw8raiocLoMY4yJKtu3b29X1fyJtkVc0FdUVFBbW+t0GcYYE1VE5NjZtlnXjTHGxDgLemOMiXEW9MYYE+Ms6I0xJsZZ0BtjTIyzoDfGmBhnQW+MMTHOgt4YY2KcBb0xxsS4iLsy1sSWx7cen/Kxt62dE8JKjJm9rEVvjDExzoLeGGNinAW9McbEOAt6Y4yJcRb0xhgT4yzojTEmxlnQG2NMjLOgN8aYGGdBb4wxMc6C3hhjYlxQQS8i60TkgIjUicj9E2y/V0TeFZEdIvK6iFT711eIyKB//Q4R+Xao34AxxphzO+9cNyLiBh4C3g80AttEZKOq7g3Y7XFV/bZ///XA14B1/m2HVXVlaMs2xhgTrGBa9GuAOlU9oqojwBPAhsAdVLUnYDEV0NCVaIwxZjqCCfpSoCFgudG/7veIyKdE5DDwFeDTAZsqReQdEfmtiFwx0QuIyD0iUisitW1tbZMo3xhjzPmE7GSsqj6kqlXA3wP/27+6GZijqquAzwCPi0jGBMc+rKo1qlqTn58fqpKMMcYQXNA3AeUBy2X+dWfzBHATgKoOq+op/+PtwGFg4dRKNcYYMxXBBP02YIGIVIpIAnALsDFwBxFZELB4A3DIvz7ffzIXEZkHLACOhKJwY4wxwTnvqBtV9YjIfcDzgBt4VFX3iMiDQK2qbgTuE5FrgVGgE7jTf/iVwIMiMgr4gHtVtSMcb8QYY8zERDWyBsjU1NRobW2t02WYEJnOrQSnw25DaGYbEdmuqjUTbbMrY40xJsZZ0BtjTIyzoDfGmBhnQW+MMTHOgt4YY2LceYdXGuO0Ua+PHce72NPczbLSTFbNycYl4nRZxkQNC3oTsbw+5bVDbWw+fIq+YQ+pCW4OnuzjraMdrF9RSml2stMlGhMVLOhNxPrtwTZe3HeShYVpXLEgn8q8VHYc7+K5PS1865U6PlpTzoryLKfLNCbiWdCbiHSqb5hXDrRyQWkmt6353cVPF87Nprokgx9srucXO5uoyEslMznewUqNiXx2MtZEHFXlFztP4HYJNy4rfs/2pHg3H7moDK9P+fk7jUTa1d3GRBoLehNxdjV2U9fax3XVhWScpbWem5bIuqVFHDzZR+2xzhmu0JjoYkFvIsrgiJdfvdtMaVYya+flnnPftfNymZeXyqZ3m+kcGJmhCo2JPhb0JqLUHuugb9jDTStLzzuE0iXCH11Yhk+Vl/adnKEKjYk+FvQmouxo6KIsOznooZPZqQnUVOSwo6GL7sHRMFdnTHSyoDcRo6V7iObuIVZNcsjk5VV5ALxR1x6OsoyJehb0JmLsaOjEJbCsbHJBn52awPKyLN6q72BwxBum6oyJXhb0JiL4VNnR0MXCwnTSEid/eccVC/IY8fjYevRUGKozJrpZ0JuIcLS9n54hDyuneKVrcWYyCwvTeOPwKUa9vhBXZ0x0s6A3EWHH8S4S41wsKc6Y8nNcuSCf/mEPbx+3cfXGBAoq6EVknYgcEJE6Ebl/gu33isi7IrJDRF4XkeqAbQ/4jzsgIh8IZfEmNox4fOw+0c0FJZnEu6fe9qjMS6U4M4lt9Xb/eWMCnfdTJSJu4CHgeqAauDUwyP0eV9VlqroS+ArwNf+x1cAtwFJgHfAt//MZc8aBk70Me3ysnDO9CcpEhIvmZnOia4i9J3pCVJ0x0S+Y5tMaoE5Vj6jqCPAEsCFwB1UN/FSlAqcnH9kAPKGqw6p6FKjzP58xZxw62UtSvIvKvNRpP9fKsizcLuGp7Q0hqMyY2BBM0JcCgZ+aRv+63yMinxKRw4y16D89yWPvEZFaEalta2sLtnYTIw639TEvLy0kNxNJSYyjujiD/36niWGPDbU0BkJ4MlZVH1LVKuDvgf89yWMfVtUaVa3Jz88PVUkmCnT0j9A5MEpVQVrInvOiudl0Dozy0r7WkD2nMdEsmKBvAsoDlsv8687mCeCmKR5rZpnDrX0AVOVPv9vmtPkFaRRnJvFkrXXfGAPBBf02YIGIVIpIAmMnVzcG7iAiCwIWbwAO+R9vBG4RkUQRqQQWAG9Nv2wTK+ra+khPiiM/LTFkz3l6srNXD7bR3D0Ysuc1JlqdN+hV1QPcBzwP7AOeVNU9IvKgiKz373afiOwRkR3AZ4A7/cfuAZ4E9gL/A3xKVa3j1ABjV8MeaeujKj8NCfHNvm++qAyfws/eti+QxgR1rbmqbgI2jVv3+YDHf3WOY78IfHGqBZrYdbJniP4RL1X5oeufP60iL5XVFdn89ztNfPKqqpD/ITEmmtiVscYxR9r6gdD2zwdav7KUQ6197G/pDcvzGxMtLOiNYw639ZGbmkBWSkJYnv+DFxThdgm/2HEiLM9vTLSwoDeO8PqUo+39IR1WOV5uWiKXz8/jlztP2A3EzaxmQW8c0dQ5wLDHF5b++UAbVpbQ1DVoE52ZWc2C3jjiSLu/fz4E0x6cy3VLi0iMc7HRum/MLGZBbxzR0DFAfloiKVO4ychkpCXGcc2SAn71bjMem6fezFIW9GbGqSoNnYOUBXkD8Olav6KU9r4RNh+2u0+Z2cmC3sy4rsFR+oY9lOekzMjrXbUon/TEODbutO4bMztZ0JsZ19g5Ni3BTLXok+LdXLe0iOf3tNiMlmZWsqA3M66hY4A4l1CUmTRjr3njimJ6hzy8erB9xl7TmEhhQW9mXGPnAMWZScS5Zu7X7/L5eWSlxPPsLuu+MbOPBb2ZUV6f0tQ1OGP986fFu12sW1rEi3tPMjRq3TdmdrGgNzPqZM8Qo16lLHtmgx7gxuUl9I94eXm/3ZDEzC4W9GZGnT4RWz5DJ2IDXTwvh9zUBJ7d1Tzjr22MkyzozYxq6BwgJcFNTmp4JjI7lzi3i+uXFfHS/pP0D3tm/PWNcYoFvZlRjZ0DlGUnOzY//I3LSxga9fGSdd+YWcSC3syY4VEvrT3DjvTPn7a6IoeC9ESetYunzCxiQW9mTGPXIAqUOxj0bpdww/JiXjnYRs/QqGN1GDOTggp6EVknIgdEpE5E7p9g+2dEZK+I7BKRl0RkbsA2r4js8P9sHH+smT1m+orYs/nQihJGPD6e393iaB3GzJTzBr2IuIGHgOuBauBWEaket9s7QI2qLgeeBr4SsG1QVVf6f9ZjZq2mrkGyU+JJDfOMleezqjyLsuxkfmmjb8wsEUyLfg1Qp6pHVHUEeALYELiDqr6sqgP+xS1AWWjLNLGguWuQ4kxnW/MAIsKHVpTwRl07p/qGnS7HmLALJuhLgYaA5Ub/urO5G3guYDlJRGpFZIuI3DTRASJyj3+f2ra2tiBKMtFmeNTLqf4RSrJmbn6bc1m/ogSvT9lk3TdmFgjpyVgRuQOoAb4asHquqtYAtwFfF5Gq8cep6sOqWqOqNfn5+aEsyUSIlp4hgIho0QMsLkpnQUEav7Q7T5lZIJigbwLKA5bL/Ot+j4hcC3wOWK+qZ74Pq2qT/98jwCvAqmnUa6LUie6xoC/JioygP91981Z9Bye6Bp0ux5iwCibotwELRKRSRBKAW4DfGz0jIquA7zAW8q0B67NFJNH/OA+4DNgbquJN9GjuGiQlwU1GkrMnYgOtX1ECwK/spKyJcecNelX1APcBzwP7gCdVdY+IPCgip0fRfBVIA54aN4xyCVArIjuBl4Evq6oF/SzU3D1ESaZzV8ROpCIvleVlmfxi53u+oBoTU4JqXqnqJmDTuHWfD3h87VmO2wwsm06BJvp5fUpLzxCXzst1upT3WL+ihP/zq33UtfYyvyDd6XKMCYvI+R5tYlZb7zBen1I8g/3zj289HtR+Xp8iwD8/u48PLC3itrVzwluYMQ6wKRBM2J3oHjvZWTyDtw4MVnpSPAsK09jZ0IVP1elyjAkLC3oTds1dg8S7hfz0RKdLmdDK8my6Bkepb+93uhRjwsKC3oRdc/cQhRlJuCLoRGyg6uIMEuJcvNPQ5XQpxoSFBb0JK1XlRPcgJRFyodREEuJcXFCSwe6mbrufrIlJFvQmrLoGRxka9VEcIVMfnM3K8myGPT5e2HvS6VKMCTkLehNWzf6rTiO5RQ8wLz+VzOR4fvZ2o9OlGBNyFvQmrE50DyFAYUZkt+hdIqwsz+LVQ+20+uflMSZWWNCbsGrpHiIvLZGEuMj/VbtoTjZen/K0tepNjIn8T5+Jai09QxRF4Pj5ieSlJ7KmMocntzWgNqbexBALehM2fcMeOvpHIvJCqbP5WE059acG2Hq0w+lSjAkZC3oTNgdaegEoivD++UAfXFZMemIcT25rOP/OxkQJC3oTNvuaewCipusGIDnBzfqVJWza3Uz34KjT5RgTEhb0Jmz2t/SQFO8iMzne6VIm5WOryxka9bFxp919ysQGC3oTNvubeynKSIqoOeiDsaw0kyXFGdZ9Y2KGBb0JC1Vlf0tvVHXbnCYi3LK6nHebutnVaPPfmOhnQW/CorFzkL5hD0UZkX1F7Nn84YWlpCS4+fGbx5wuxZhps6A3YbH/9IibKGzRA2QkxfOHq0rZuPMEXQMjTpdjzLRY0Juw2O8fcVOYEZlz0AfjjovnMuzx8VStXSlroltQQS8i60TkgIjUicj9E2z/jIjsFZFdIvKSiMwN2HaniBzy/9wZyuJN5Nrf0svc3BQS49xOlzJlS4ozWF2RzWNbj+Hz2ZWyJnqdN+hFxA08BFwPVAO3ikj1uN3eAWpUdTnwNPAV/7E5wBeAtcAa4Asikh268k2k2tfSw+Ki6L/Z9h0Xz+XYqQFeq2t3uhRjpiyYFv0aoE5Vj6jqCPAEsCFwB1V9WVUH/ItbgDL/4w8AL6hqh6p2Ai8A60JTuolUgyNe6tv7WVyU4XQp03b9BcXkpSXw4zfrnS7FmCkLJuhLgcABxY3+dWdzN/DcZI4VkXtEpFZEatva2oIoyUSyQ629+BSWFEd/iz4hzsUtq+fw0v5WGjoGzn+AMREopCdjReQOoAb46mSOU9WHVbVGVWvy8/NDWZJxwP7msRE3sdCih7HuG7cIP9hc73QpxkxJMEHfBJQHLJf51/0eEbkW+BywXlWHJ3OsiS37WnpIjnczJyfF6VJCoigziRuWF/Nf2xroHbL5b0z0iQtin23AAhGpZCykbwFuC9xBRFYB3wHWqWprwKbngS8FnIC9Dnhg2lWbiLa/uZeFRem4XNE19QHA41uPT7i+NCuZvmEP9z/zLpfNz5twn9vWzglnacZM2Xlb9KrqAe5jLLT3AU+q6h4ReVBE1vt3+yqQBjwlIjtEZKP/2A7gnxn7Y7ENeNC/zsSosakPeqiOgf75QGXZKczNSWHz4XZ8dlMSE2WCadGjqpuATePWfT7g8bXnOPZR4NGpFmiiS2vvMJ0DozHTPx/o0vl5/PSt4+xv7qG6JNPpcowJml0Za0Jqr/+K2FgYQz9edXEGWSnxvF53yulSjJkUC3oTUmdG3BTHXove7RIumZdL/al+GjttqKWJHhb0JqT2t/RQmpUcdTcbCdbqihwS41y8dsiulDXRw4LehNT+5t6Y7LY5LSnezZrKHHY3ddPRb7NamuhgQW9CZtjj5XBbH4tjbMTNeJdW5eES4Q2b/8ZECQt6EzKHW/vx+DQmR9wEykyOZ0V5FrXHOhgY9jhdjjHnZUFvQmaff8RNLMxxcz5XLMhj1KtsOWojcEzks6A3IbO/pYfEOBcVualOlxJ2hRlJLCpM583Dpxj1+pwux5hzsqA3IbO/pZeFhenEuWfHr9UVC/PoH/Gy/Vin06UYc06z4xNpZsS+GB9xM15lbirl2cm8dqgNr92BykQwC3oTEm29w7T3DcfkhVJnIyK8b2EBnQOj7G7qdrocY87Kgt6ExIGWsStil8yiFj3A4uJ08tMT+e3BNtQmOzMRyoLehMT+Fv8cN7OoRQ/gEuF9C/Jp6RnilYN2dzQTmSzoTUjsbe6hMCORnNQEp0uZccvLM8lMjuc/XznsdCnGTMiC3oTE2InY2dWaPy3O5eLy+Xm8dbSD7cfsdgsm8ljQm2kb9ng5dLKX6pLZGfQwNtlZdko833rZWvUm8ljQm2k7dLIPj09ZOouDPiHOxZ9eVslL+1vPXCFsTKSwoDfTtvfEWLAtneV3XbrzkgpSE9zWV28iTlBBLyLrROSAiNSJyP0TbL9SRN4WEY+I3Dxum9d/H9kz95I1sWXPiW5SE9zMzUlxuhRHZabEc8clc3l21wnq2/udLseYM84b9CLiBh4CrgeqgVtFpHrcbseBjwOPT/AUg6q60v+zfoLtJsrtOdHDkuIMXC5xuhTH3X15JXFuF9959YjTpRhzRjAt+jVAnaoeUdUR4AlgQ+AOqlqvqrsAm91plvH5lH3NPbO6fz5QQXoSH60p45ntjbR0DzldjjFAcEFfCjQELDf61wUrSURqRWSLiNw00Q4ico9/n9q2NrvoJJrUn+qnf8Q76/vnA/3FlVV4VXnkNWvVm8gwEydj56pqDXAb8HURqRq/g6o+rKo1qlqTn58/AyWZUNnjPxE7m4dWjleek8KGlSU8vvU4p/qGnS7HmKCCvgkoD1gu868Liqo2+f89ArwCrJpEfSbC7W3uId4tLCycXXPcnM8nr5rPkMfLo28cdboUY4IK+m3AAhGpFJEE4BYgqNEzIpItIon+x3nAZcDeqRZrIs+eEz3ML0gnIc5G6gaaX5DGBy8o5kebj9E9OOp0OWaWO++nU1U9wH3A88A+4ElV3SMiD4rIegARWS0ijcBHgO+IyB7/4UuAWhHZCbwMfFlVLehjhKqy90S3nYg9i0/+QRW9wx5+tLne6VLMLBcXzE6qugnYNG7d5wMeb2OsS2f8cZuBZdOs0USo1t5h2vtGLOjPYmlJJlcvLuDRN45y1+WVpCYG9XEzJuTs+7aZsj0nxm62YSNuzu6+q+fTOTDKT7Yec7oUM4tZE8NM2Z6msRE3S4rtRCzA41uPT7h+fn4a//FSHQlu91nPZdy2dk44SzOznLXozZTtOdHD3NwU0pPinS4lov3B4gL6hz1sq7cpjI0zLOjNlO1pthOxwajMS2VeXiqvHmxj1GsXj5uZZ0FvpuRU3zANHYOsKMtyupSocPXiAnqtVW8cYkFvpmRX49iJ2BXlFvTBmJefRkWuteqNMyzozZTsaOjCJbCs1EbcBOvqxQX0DHmoPdbpdClmlrGgN1Oys7GLBQXpNjZ8EqryU6nITeGVA63WqjczyoLeTJqqsrOhixXl1pqfDBHh/dVF9A552HrklNPlmFnEgt5MWkPHIJ0Do9Y/PwWVeanMz0/jlYNtDHu8TpdjZgkLejNpOxq7AFhpQT8l11YXMjDi5c3D1qo3M8OC3kzazoYukuJdNjXxFM3JSWFxUTqvHmpjcMRa9Sb8LOjNpO1s6OKCkkzi3fbrM1XXLilkaNTH63V2RzUTfvZJNZMy6vWx+0S39c9PU0lWMstKM3m9rp0em6/ehJkFvZmUAy29DI36LOhD4ANLi/D54MV9J50uxcQ4C3ozKTtPn4i1qQ+mLSc1gYvn5bD9WCcHT/Y6XY6JYRb0ZlJ2NnSRnRJPeU6y06XEhD9YVEBivIt/2bTP6VJMDLOgN5Oys2Gsf15EnC4lJqQkxnHVwgJePtDG5rp2p8sxMcqC3gSte2CUg629rCrPdrqUmHJJVS6lWck8+OxePDY1ggmDoIJeRNaJyAERqROR+yfYfqWIvC0iHhG5edy2O0XkkP/nzlAVbmbetvoOVGHtvBynS4kp8W4Xn7thCftbenlsi91y0ITeeYNeRNzAQ8D1QDVwq4hUj9vtOPBx4PFxx+YAXwDWAmuAL4iINQej1Najp0hwu+yK2DC4/oIirliQx//99UHaeoedLsfEmGBa9GuAOlU9oqojwBPAhsAdVLVeVXcB4793fgB4QVU7VLUTeAFYF4K6jQPeOtrByvIskuLdTpcSc0SEf1y/lCGPly8/t9/pckyMCSboS4GGgOVG/7pgBHWsiNwjIrUiUtvWZlcKRqK+YQ+7T/RYt00YVeWn8WdXzOOZtxuptTtRmRCKiJOxqvqwqtaoak1+fr7T5ZgJbD/WidenrK3MdbqUmPaXV8+nODOJf/j5uza7pQmZYIK+CSgPWC7zrwvGdI41EWTrkVPEuYQL51r/fDilJMTxxT+8gIMn+/jmb+qcLsfEiGCCfhuwQEQqRSQBuAXYGOTzPw9cJyLZ/pOw1/nXmSiz9WgHy8oySUmwO0qF29WLC/nwhaV865XD7G7qdrocEwPOG/Sq6gHuYyyg9wFPquoeEXlQRNYDiMhqEWkEPgJ8R0T2+I/tAP6ZsT8W24AH/etMFBkc8bKrsYs1ldY/P1O+cONS8tIS+OxTOxnx2Nh6Mz1BNc9UdROwady6zwc83sZYt8xExz4KPDqNGo3D/u3XBxj1KkMjXh7fetzpcmaFzJR4/uXDy7jrB7V846VDfPYDi5wuyUSxiDgZayLb0fZ+BJibm+p0KbPK1YsLufmiMr71Sp3djcpMiwW9Oa+j7f0UZyXZ+HkH/NP6pVTkpfLpJ96xC6nMlFnQm3MaGvXS0DFApbXmHZGaGMe3br+QnsFR/ua/duD1qdMlmShkQW/OafPhdjw+tfvDOmhxUQb/tH4pr9e189DLNuTSTJ4FvTmnl/a1kuB2UZlnLXonfWx1OTetLOHfXzzIC3vtjlRmcmxQtDkrVeU3+1uZX5BGnN0IPKyCGc20sjyb2mOdfOonb3PPlfMoyRq7+ctta+eEuzwT5ezTa85qX3Mvzd1DLC6ybptIkBDn4o6L55Kc4ObHW47RO2Q3FTfBsaA3Z/Wb/WNdBIss6CNGRlI8f3zxXAZHvPx4yzGbD8cExYLenNWL+1pZUZ5FelK806WYACVZyXxsdTknugb5yZbjFvbmvCzozYTaeofZ2djFNYsLnC7FTGBJcQYfXlVGXVsff/XTHXYLQnNOFvRmQq8caEUVrragj1gXzs3mhmXF/M+eFh742bv4bIy9OQsbdTPDpjNXzEyOrvjN/laKMpJYWpLBrkabQTFSXTY/j6qCNL7x0iHi3MIXb1qGyyVOl2UijAW9eY9hj5dXD7axYVUpIhYake5vrl2A1+fjoZcPA1jYm/ewoDfv8eLeVvpHvKxbWuR0KSYIIsJnr1uEIHzz5TpU4Ut/aGFvfseC3rzHU9sbKM5M4rL5eU6XYoIkIvztdQsRgf/3mzpGvD6+8kfL7UI3A1jQm3Fauod49WAbn7xqPm5rEUYVEeEz719IvNvF1144yLDHx9c/tpJ4C/tZz4Le/J5n3m7Ep3DzRRPeR8ZEOBHh09csICnexZc27WfE4+Obt60iMc6mmJ7NLOjNGarK09sbWVOZQ4VNYhY1JhrJlZYYz4dWlPDLnSe48Ruvc/vauSTEvbdlb/PkzA5BfacTkXUickBE6kTk/gm2J4rIf/m3bxWRCv/6ChEZFJEd/p9vh7Z8E0q1xzo52t7PR6w1HxMumZfLh1eVUtfaxw/frGd41K6gna3OG/Qi4gYeAq4HqoFbRaR63G53A52qOh/4d+BfA7YdVtWV/p97Q1S3CYOnahtISXDzwWXFTpdiQqSmIoeP1pRz7FQ/j75xlMERC/vZKJgW/RqgTlWPqOoI8ASwYdw+G4Af+h8/DVwjNgA7qvQNe/jVrmZuXF5MaqL16MWSFeVZ3LpmDie6hnj0jaMMjHicLsnMsGCCvhRoCFhu9K+bcB9V9QDdQK5/W6WIvCMivxWRKyZ6ARG5R0RqRaS2ra1tUm/AhMYPN9fTP+Ll9rVznS7FhMHSkkxuv3gOLT1DfO/1o/QPW9jPJuEed9UMzFHVVcBngMdFJGP8Tqr6sKrWqGpNfn5+mEsy43UPjvKd3x7m2iUFrCjPcrocEyaLizL444vn0tY7zHdfP0Kfhf2sEUzQNwHlActl/nUT7iMicUAmcEpVh1X1FICqbgcOAwunW7QJrUdePULPkIfPvH+R06WYMFtYmM6dl1bQ0T/Cd187QnvfsNMlmRkQTNBvAxaISKWIJAC3ABvH7bMRuNP/+GbgN6qqIpLvP5mLiMwDFgBHQlO6CYX2vmEefeMoNywvprrkPV+2TAyqyk/jTy6poHNghNse2WJhPwucN+j9fe73Ac8D+4AnVXWPiDwoIuv9u30PyBWROsa6aE4PwbwS2CUiOxg7SXuvqnaE+k2Yqfv2K4cZGvXyN9faF63Z5HTYH+8YsLCfBYIaXqGqm4BN49Z9PuDxEPCRCY57BnhmmjWaMGnoGOBHW47x4QvLmF+Q5nQ5ZoZV5afx6MdXc9cPtnH7I1v56T0Xk5Oa4HRZJgxsEoxZamjUyyd/8jaJcS7++toFTpdjHHJpVR7fu3M19af6ue2RLXT2jzhdkgkDC/pZ6sFn9/JuUzdf++hKyrJTnC7HOOiy+Xl8984ajrT3c/t3t9I1YGEfayzoI8SIx0dL9xB7T3Szu6mbw219nOgaDMuVjE9vb+Txrcf5xFVVvL+6MOTPb6LPFQvyeeRPaqhr6+OO722le2DU6ZJMCNklkA5q7RliZ2MX7zZ10943cStKgMKMJObmppCTGs/7FhaQnDD1mQhfPdjG537+LpfMy+Vv328nYGe78ROi3bp6Do9tPcb133iVuy+bd87fNZsQLXpY0M8wVeXAyV5e2tdKU9cgAlQVpLGyPJvctARyUxNwu4TBUS+DI15O9gxx7NQAOxq6uPext0lJcHPNkkJuWFbMVYvySYoPLvQ9Xh9ff/EQD71Sx4KCNL5x6yq7KYV5j+MrlZoAAAv9SURBVEVF6dyxdg6PbT3Oo28c5a7LKqfVsDCRwYJ+Bm0/1sEjrx2h/tQAOakJ3LCsmOVlmaQnxZ/1mKUlmQB4fcq8/FSe3dXM83ta+OXOE6QlxnHd0kKuv6CYNRU5ZKa893k8Xh/b6jv5+osH2Xq0g4/VlPOP65fah9ec1aKijDNh/73Xj/Cnl1Xa/EdRTlTV6Rp+T01NjdbW1jpdRkj1Do3ypU37+elbx0lPjOPqJQXUzM2Z9B2cTn9V9nh9bD58imd3neC53S30DnkQgUWF6SwtySQ5wUWC201H/zCvHGyja2CU1AQ3D264gD+awhTEE813bmLfwZO9PLblGDmpCdx1eSUZ4xok1nUTWURku6rWTLTN/kyH2W8PtvHAM7to6RninivnUZKZPOENICYjzu3iyoX5XLkwn3++6QLeOd7FW0c72FbfwRt17Yx4fYx6fCTGu7l6cQHXVRdyxYJ8a5WZSVlYmM7HL63gR28e45FXj3D35ZVkpdg4+2hkn/wwGRr18uXn9vODzfVU5afy9Ccu5cI52SFvHSfGubl4Xi4Xz8s9/87GTNK8/DTuuqyC72+u5zuvHuHOSysoykhyuiwzSRb0YXDoZC9/+dN32N/Sy12XVfJ36xYFfdLUmEgzJzeVe66cxw831/Pwq4e5fe1cqvKdu5J6Oo2l2drdZMMuQkhV+elbx/nQN1+nrXeY7398NZ//ULWFvIl6xZnJ3Pu+KjKS4vnB5np2NHQ6XZKZBGvRh0j3wCgP/HwXm95t4fL5eXztoysosK+4JoZkpSTwF1dW8djWYzxZ20haYjwPfHAx8TZMN+JZ0IfAm4dP8dmndnKyZ4j7r1/MPVfMwzXJETXGRIPkBDd3XVbJc7ubefSNo+xu6uabt6+iIN0aNZHM/hRPw+CIl3/cuIdbH9lCnFt4+hOXcu/7qizkTUxzu4Qbl5fwH7esZFdTF9d//TWe3XWCSBuqbX7HWvRTtLmunc/9926Otvdz5yVz+fvrF5OSYP85zeyxYWUpS4oz+OxTO7nv8Xd4dmkzD9601Fr3EciSaZIaOgb40qZ9PLe7hfKcZB7/87VcWpXndFnGOGJhYTo/+8SlPPLaUf79xYO8/m/t/NkVlfzZFfNIc+C6DY/XR8fACH1DHgZGvAyNevH4FLcILpeQkxpPQUYSRRlJFKQnzpppQCzog9TaM8Qjrx3hR28ewyXCZ69byJ9dMW9GR9TYFaomEsW5XXziqiquW1rIV//nAF9/8RA/evMYf37FPD5SU0ZeWmLIX1NV6RwYpalrkBP+n/a+YboGRjlXB9IzbzeeeRzvFqry01hUlE51cQar5mSzvCwzJkfJ2RQI51HX2sv336jnqdpGvKpsWFHC/1q3iOLM5Ck9n4W1iRVnG5O+s6GLf/v1AV471E6cS7hmSQEfvrCMS6py3zONQrDa+4Z5t6mbdxu7+dWuZho7B+j3T+HtEihIT6IwI5HctERyUxPISI4nJcFNcrwbt0vwKfh8ylWL8znZM0RL9zDHOvo52NLLgZZeTnQPARDnEpaWZLC6Ioc1lTmsrsghO0ruumVTIExSa88Qz+1u4WdvN7KzsZsEt4uba8q498oq5uTaTTqMOZcV5Vn8+O61HDrZy5O1Dfzs7Sae33MSl4xN0nfR3GwqclMozU6hKCOJ+DjBLYICnf0jnOofob1vmCNt/Rxu66OutY9mfxAD5Kcnsqgog/KcZEqzkinMSAp6iOfSkswzEwUGOtU3zDvHu3j7eCe1xzr50ZZjfPf1owAsLEyjpiKH1RXZrCwfq10kugZcBNWiF5F1wH8AbuC7qvrlcdsTgR8BFwGngI+par1/2wPA3YAX+LSqPn+u15rpFr3PpzR0DrCvuYe3jnbyel0bB0/2AVBdnMGHLyxlw8pS8tND8/XTWvQmVgR7lemo10dtfSdbj55iy5FT7GzoZnD0/DfUSU1wU1WQxry8VJaWZLKsLJOlJRn8cmdz2Gse9njZ1dh9Zg6p7fWd9A57AMhMjmd5WSZLijNYVJjOoqJ0KvJSHTknEWhaLXoRcQMPAe8HGoFtIrJRVfcG7HY30Kmq80XkFuBfgY+JSDVwC7AUKAFeFJGFqhry2yapKqNePTOh14jXx+CIl4ERLwMjHroHR+kcGKVrYISW7iGaugZp6hrkcGvfma+AiXEu1lTm8OELy7hqUT6LizJCXaYxs06828UlVblcUjU2H5Oq0tE/QmPnICd7hvD6FK+/wZmVnDB2X4a0BPLTEh1rOSfGuVldMdZ1A2PThB882cvOhi52Nnaxs6GbH2yuZ8TjO3NMTmoCc3LGvqUUZCRSkJ5IVkoCmcnxZCbHk5oYR0qCm5QEN4lxbhLiXMS7hXi3C7dLzpwwDodg/gStAepU9QiAiDwBbAACg34D8I/+x08D35Sx/0MbgCdUdRg4KiJ1/ud7MzTl/0573wirv/hiUPsmxbsoyRr72nfzRWUsKc6guiSDhYXpMXkixphIIiJjfelhOEkbLm6XsKQ4gyXFGdyy5nfThdefGuDgyV6OnRrgeEc/xzsGqGvrY/PhdnqGPJN+nZXlWfz3py4LdflBBX0p0BCw3AisPds+quoRkW4g179+y7hjS8e/gIjcA9zjX+wTkQMT1JEHtAdRb1AmeoEZEtL34aBYeB+x8B7Aofdxe+ifMuzvIww1jzet93AMkPum/Npzz7YhIk7GqurDwMPn2kdEas/W/xRN7H1Ejlh4D2DvI5JE6nsI5lR1E1AesFzmXzfhPiISB2QydlI2mGONMcaEUTBBvw1YICKVIpLA2MnVjeP22Qjc6X98M/AbHRvOsxG4RUQSRaQSWAC8FZrSjTHGBOO8XTf+Pvf7gOcZG175qKruEZEHgVpV3Qh8D/ix/2RrB2N/DPDv9yRjJ249wKemMeLmnF07UcTeR+SIhfcA9j4iSUS+h4i7MtYYY0xozY4ZfYwxZhazoDfGmBgXVUEvIl8Vkf0isktEfi4iWU7XNBkisk5EDohInYjc73Q9kyUi5SLysojsFZE9IvJXTtc0HSLiFpF3RORZp2uZKhHJEpGn/Z+LfSJyidM1TZaI/I3/92m3iPxURKJiQnsReVREWkVkd8C6HBF5QUQO+f/NdrLG06Iq6IEXgAtUdTlwEHjA4XqCFjCVxPVANXCrf4qIaOIB/lZVq4GLgU9F4XsI9FfAPqeLmKb/AP5HVRcDK4iy9yMipcCngRpVvYCxAR+3OFtV0H4ArBu37n7gJVVdALzkX3ZcVAW9qv5aVU9fV7yFsXH50eLMVBKqOgKcnkoiaqhqs6q+7X/cy1iovOdK52ggImXADcB3na5lqkQkE7iSsVFvqOqIqnY5W9WUxAHJ/mtwUoATDtcTFFV9lbFRhoE2AD/0P/4hcNOMFnUWURX049wFPOd0EZMw0VQSURmSACJSAawCtjpbyZR9Hfg7wHe+HSNYJdAGfN/fBfVdEUl1uqjJUNUm4N+A40Az0K2qv3a2qmkpVNXT02u2AIVOFnNaxAW9iLzo76sb/7MhYJ/PMdaN8BPnKp29RCQNeAb4a1XtcbqeyRKRG4FWVd3udC3TFAdcCPynqq4C+omQroJg+fuwNzD2R6sESBWRO5ytKjT8F41GxPj1iJjrJpCqXnuu7SLyceBG4BqNrosAYmI6CBGJZyzkf6KqP3O6nim6DFgvIh8EkoAMEXlMVaMtYBqBRlU9/a3qaaIs6IFrgaOq2gYgIj8DLgUec7SqqTspIsWq2iwixUCr0wVBBLboz8V/A5S/A9ar6oDT9UxSMFNJRDT/1NPfA/ap6tecrmeqVPUBVS1T1QrG/j/8JgpDHlVtARpEZJF/1TX8/vTh0eA4cLGIpPh/v64hyk4ojxM4HcydwC8crOWMiGvRn8c3gUTgBf8NCbao6r3OlhScs00l4XBZk3UZ8MfAuyKyw7/uH1R1k4M1zXZ/CfzE33g4Avypw/VMiqpuFZGngbcZ6459hwidRmA8EfkpcBWQJyKNwBeALwNPisjdjM06/FHnKvwdmwLBGGNiXFR13RhjjJk8C3pjjIlxFvTGGBPjLOiNMSbGWdAbY0yMs6A3xpgYZ0FvjDEx7v8DkkqkOYsKWlAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.distplot((df_results.endzeit-df_results.startzeit)/60)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.1"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"navigate_num": "#000000",
"navigate_text": "#333333",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700",
"sidebar_border": "#EEEEEE",
"wrapper_background": "#FFFFFF"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "12px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}